Molecular insights into human soleus muscle atrophy development: long-term dry immersion effects on the transcriptomic profile and posttranslational signaling.
Roman O Bokov, Kristina A Sharlo, Natalia A Vilchinskaya, Sergey A Tyganov, Olga V Turtikova, Sergey V Rozhkov, Ruslan M Deviatiiarov, Oleg A Gusev, Elena S Tomilovskaya, Boris S Shenkman, Oleg I Orlov
{"title":"Molecular insights into human soleus muscle atrophy development: long-term dry immersion effects on the transcriptomic profile and posttranslational signaling.","authors":"Roman O Bokov, Kristina A Sharlo, Natalia A Vilchinskaya, Sergey A Tyganov, Olga V Turtikova, Sergey V Rozhkov, Ruslan M Deviatiiarov, Oleg A Gusev, Elena S Tomilovskaya, Boris S Shenkman, Oleg I Orlov","doi":"10.1152/physiolgenomics.00196.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Muscle disuse results in complex signaling alterations followed by structural and functional changes, such as atrophy, force decrease, and slow-to-fast fiber-type shift. Little is known about human skeletal muscle signaling alterations under long-term muscle disuse. In this study, we describe the effects of 21-day dry immersion on human postural soleus muscle. We performed both transcriptomic analysis and Western blots to describe the states of the key signaling pathways regulating soleus muscle fiber size, fiber type, and metabolism. Twenty-one-day dry immersion resulted in both slow-type and fast-type myofibers atrophy, downregulation of rRNA content, and mTOR signaling. Twenty-one-day dry immersion also leads to slow-to-fast fiber-type and gene expression shift, upregulation of p-eEF2, p-CaMKII, p-ACC content and downregulation of NFATc1 nuclear content. It also caused massive gene expression alterations associated with calcium signaling, cytoskeletal parameters, and downregulated mitochondrial signaling (including fusion, fission, and marker of mitochondrial density).<b>NEW & NOTEWORTHY</b> The main findings of our study are as follows: <i>1</i>) The soleus slow fibers atrophy after 21-day dry immersion (DI) does not exceed that after 7-day DI; <i>2</i>) The soleus ubiquitin ligases expression after 21-day DI returns to its initial level; <i>3</i>) The soleus slow fibers atrophy after 21-day DI is accompanied by a mitochondrial apparatus structural markers decrease; <i>4</i>) The soleus fibers signaling pathways restructuring process during 21-day DI is carried out in a complex manner.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":"357-382"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/physiolgenomics.00196.2024","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Muscle disuse results in complex signaling alterations followed by structural and functional changes, such as atrophy, force decrease, and slow-to-fast fiber-type shift. Little is known about human skeletal muscle signaling alterations under long-term muscle disuse. In this study, we describe the effects of 21-day dry immersion on human postural soleus muscle. We performed both transcriptomic analysis and Western blots to describe the states of the key signaling pathways regulating soleus muscle fiber size, fiber type, and metabolism. Twenty-one-day dry immersion resulted in both slow-type and fast-type myofibers atrophy, downregulation of rRNA content, and mTOR signaling. Twenty-one-day dry immersion also leads to slow-to-fast fiber-type and gene expression shift, upregulation of p-eEF2, p-CaMKII, p-ACC content and downregulation of NFATc1 nuclear content. It also caused massive gene expression alterations associated with calcium signaling, cytoskeletal parameters, and downregulated mitochondrial signaling (including fusion, fission, and marker of mitochondrial density).NEW & NOTEWORTHY The main findings of our study are as follows: 1) The soleus slow fibers atrophy after 21-day dry immersion (DI) does not exceed that after 7-day DI; 2) The soleus ubiquitin ligases expression after 21-day DI returns to its initial level; 3) The soleus slow fibers atrophy after 21-day DI is accompanied by a mitochondrial apparatus structural markers decrease; 4) The soleus fibers signaling pathways restructuring process during 21-day DI is carried out in a complex manner.
期刊介绍:
The Physiological Genomics publishes original papers, reviews and rapid reports in a wide area of research focused on uncovering the links between genes and physiology at all levels of biological organization. Articles on topics ranging from single genes to the whole genome and their links to the physiology of humans, any model organism, organ, tissue or cell are welcome. Areas of interest include complex polygenic traits preferably of importance to human health and gene-function relationships of disease processes. Specifically, the Journal has dedicated Sections focused on genome-wide association studies (GWAS) to function, cardiovascular, renal, metabolic and neurological systems, exercise physiology, pharmacogenomics, clinical, translational and genomics for precision medicine, comparative and statistical genomics and databases. For further details on research themes covered within these Sections, please refer to the descriptions given under each Section.