A method for approximating high frequency sound radiation-The plane projection Rayleigh integral.

IF 2.1 2区 物理与天体物理 Q2 ACOUSTICS
Marius Walther, André Gerlach, Marko Liebler, Christoph Haugwitz, Mario Kupnik
{"title":"A method for approximating high frequency sound radiation-The plane projection Rayleigh integral.","authors":"Marius Walther, André Gerlach, Marko Liebler, Christoph Haugwitz, Mario Kupnik","doi":"10.1121/10.0036130","DOIUrl":null,"url":null,"abstract":"<p><p>The sound radiation of vibrating surfaces can be calculated using integral-based numerical methods. Due to the increasing discretization requirements, the computational effort increases significantly with increasing frequencies. Therefore, approximation methods with less computational effort are desirable. This paper introduces a method called the plane projection Rayleigh integral (PPRI), which combines low computational effort with high precision. The method approximates the sound radiation by applying the Rayleigh integral to a vibrating virtual plane representing the object in two dimensions. The method's performance is evaluated by comparing it to the visible element Rayleigh integral and the high frequency boundary element method (HFBEM), focusing on the accuracy and its dependence on radius of surface curvature, sound frequency, and distance from the surface. Analytical solutions for the breathing and oscillating sphere are used as benchmarks. The PPRI demonstrates the highest accuracy among the methods tested. Error values decrease significantly with larger radii and higher frequencies, falling below a 1% threshold at 4 times smaller Helmholtz numbers (radius-wavelength ratio) than the HFBEM. Additionally, the PPRI requires the least computational time in this consideration. Thus, the PPRI achieves both high precision and efficiency.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":"157 3","pages":"1714-1725"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of America","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1121/10.0036130","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The sound radiation of vibrating surfaces can be calculated using integral-based numerical methods. Due to the increasing discretization requirements, the computational effort increases significantly with increasing frequencies. Therefore, approximation methods with less computational effort are desirable. This paper introduces a method called the plane projection Rayleigh integral (PPRI), which combines low computational effort with high precision. The method approximates the sound radiation by applying the Rayleigh integral to a vibrating virtual plane representing the object in two dimensions. The method's performance is evaluated by comparing it to the visible element Rayleigh integral and the high frequency boundary element method (HFBEM), focusing on the accuracy and its dependence on radius of surface curvature, sound frequency, and distance from the surface. Analytical solutions for the breathing and oscillating sphere are used as benchmarks. The PPRI demonstrates the highest accuracy among the methods tested. Error values decrease significantly with larger radii and higher frequencies, falling below a 1% threshold at 4 times smaller Helmholtz numbers (radius-wavelength ratio) than the HFBEM. Additionally, the PPRI requires the least computational time in this consideration. Thus, the PPRI achieves both high precision and efficiency.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
16.70%
发文量
1433
审稿时长
4.7 months
期刊介绍: Since 1929 The Journal of the Acoustical Society of America has been the leading source of theoretical and experimental research results in the broad interdisciplinary study of sound. Subject coverage includes: linear and nonlinear acoustics; aeroacoustics, underwater sound and acoustical oceanography; ultrasonics and quantum acoustics; architectural and structural acoustics and vibration; speech, music and noise; psychology and physiology of hearing; engineering acoustics, transduction; bioacoustics, animal bioacoustics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信