SOX9 Overexpression Ameliorates Metabolic Dysfunction-associated Steatohepatitis Through Activation of the AMPK Pathway.

IF 3.1 3区 医学 Q2 GASTROENTEROLOGY & HEPATOLOGY
Juan Deng, Kai Ding, Shuqing Liu, Fei Chen, Ru Huang, Bonan Xu, Xin Zhang, Weifen Xie
{"title":"SOX9 Overexpression Ameliorates Metabolic Dysfunction-associated Steatohepatitis Through Activation of the AMPK Pathway.","authors":"Juan Deng, Kai Ding, Shuqing Liu, Fei Chen, Ru Huang, Bonan Xu, Xin Zhang, Weifen Xie","doi":"10.14218/JCTH.2024.00197","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>The transcription factor sex-determining region Y-related high-mobility group-box gene 9 (SOX9) plays a critical role in organ development. Although SOX9 has been implicated in regulating lipid metabolism <i>in vitro</i>, its specific role in metabolic dysfunction-associated steatohepatitis (MASH) remains poorly understood. This study aimed to investigate the role of SOX9 in MASH pathogenesis and explored the underlying mechanisms.</p><p><strong>Methods: </strong>MASH models were established using mice fed either a methionine- and choline-deficient (MCD) diet or a high-fat, high-fructose diet. To evaluate the effects of SOX9, hepatocyte-specific SOX9 deletion or overexpression was performed. Lipidomic analyses were conducted to assess how SOX9 influences hepatic lipid metabolism. RNA sequencing was employed to identify pathways modulated by SOX9 during MASH progression. To elucidate the mechanism further, HepG2 cells were treated with an adenosine monophosphate-activated protein kinase (AMPK) inhibitor to test whether SOX9 acts via AMPK activation.</p><p><strong>Results: </strong>SOX9 expression was significantly elevated in hepatocytes of MASH mice. Hepatocyte-specific SOX9 deletion exacerbated MCD-induced MASH, whereas overexpression of SOX9 mitigated high-fat, high-fructose-induced MASH. Lipidomic and RNA sequencing analyses revealed that SOX9 suppresses the expression of genes associated with lipid metabolism, inflammation, and fibrosis in MCD-fed mice. Furthermore, SOX9 deletion inhibited AMPK pathway activation, while SOX9 overexpression enhanced it. Notably, administration of an AMPK inhibitor negated the protective effects of SOX9 overexpression, leading to increased lipid accumulation in HepG2 cells.</p><p><strong>Conclusions: </strong>Our findings demonstrate that SOX9 overexpression alleviates hepatic lipid accumulation in MASH by activating the AMPK pathway. These results highlight SOX9 as a promising therapeutic target for treating MASH.</p>","PeriodicalId":15484,"journal":{"name":"Journal of Clinical and Translational Hepatology","volume":"13 3","pages":"189-199"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11894392/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical and Translational Hepatology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14218/JCTH.2024.00197","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and aims: The transcription factor sex-determining region Y-related high-mobility group-box gene 9 (SOX9) plays a critical role in organ development. Although SOX9 has been implicated in regulating lipid metabolism in vitro, its specific role in metabolic dysfunction-associated steatohepatitis (MASH) remains poorly understood. This study aimed to investigate the role of SOX9 in MASH pathogenesis and explored the underlying mechanisms.

Methods: MASH models were established using mice fed either a methionine- and choline-deficient (MCD) diet or a high-fat, high-fructose diet. To evaluate the effects of SOX9, hepatocyte-specific SOX9 deletion or overexpression was performed. Lipidomic analyses were conducted to assess how SOX9 influences hepatic lipid metabolism. RNA sequencing was employed to identify pathways modulated by SOX9 during MASH progression. To elucidate the mechanism further, HepG2 cells were treated with an adenosine monophosphate-activated protein kinase (AMPK) inhibitor to test whether SOX9 acts via AMPK activation.

Results: SOX9 expression was significantly elevated in hepatocytes of MASH mice. Hepatocyte-specific SOX9 deletion exacerbated MCD-induced MASH, whereas overexpression of SOX9 mitigated high-fat, high-fructose-induced MASH. Lipidomic and RNA sequencing analyses revealed that SOX9 suppresses the expression of genes associated with lipid metabolism, inflammation, and fibrosis in MCD-fed mice. Furthermore, SOX9 deletion inhibited AMPK pathway activation, while SOX9 overexpression enhanced it. Notably, administration of an AMPK inhibitor negated the protective effects of SOX9 overexpression, leading to increased lipid accumulation in HepG2 cells.

Conclusions: Our findings demonstrate that SOX9 overexpression alleviates hepatic lipid accumulation in MASH by activating the AMPK pathway. These results highlight SOX9 as a promising therapeutic target for treating MASH.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Clinical and Translational Hepatology
Journal of Clinical and Translational Hepatology GASTROENTEROLOGY & HEPATOLOGY-
CiteScore
6.40
自引率
2.80%
发文量
496
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信