Resveratrol reduces RVLM neuron activity via activating the AMPK/Sirt3 pathway in stress-induced hypertension.

IF 4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Lin-Ping Wang, Tian-Feng Liu, Teng-Teng Dai, Xin Deng, Lei Tong, Qiang-Cheng Zeng, Qing He, Zhang-Yan Ren, Hai-Li Zhang, Hai-Sheng Liu, Yan-Fang Li, Wen-Zhi Li, Shuai Zhang, Dong-Shu Du
{"title":"Resveratrol reduces RVLM neuron activity via activating the AMPK/Sirt3 pathway in stress-induced hypertension.","authors":"Lin-Ping Wang, Tian-Feng Liu, Teng-Teng Dai, Xin Deng, Lei Tong, Qiang-Cheng Zeng, Qing He, Zhang-Yan Ren, Hai-Li Zhang, Hai-Sheng Liu, Yan-Fang Li, Wen-Zhi Li, Shuai Zhang, Dong-Shu Du","doi":"10.1016/j.jbc.2025.108394","DOIUrl":null,"url":null,"abstract":"<p><p>Neuronal hyperexcitability in the rostral ventrolateral medulla (RVLM), driven by oxidative stress, plays a crucial role in stress-induced hypertension (SIH). While resveratrol (RSV) is known for its antioxidant properties, its effects on RVLM neurons in SIH remain unclear. We investigated this using an SIH rat model exposed to electric foot shocks and noise stimulation for 15 days. Analysis of RVLM tissue revealed increased mitochondrial damage, oxidative stress, apoptosis, and dysregulated ferroptosis in SIH rats. RSV microinjection into the RVLM reduced blood pressure, sympathetic vascular tone, and neuronal excitability. Both in vivo and in vitro studies showed that RSV treatment alleviated mitochondrial oxidative stress, apoptosis, and ferroptosis through AMPK activation and subsequent Sirt3 upregulation. These therapeutic effects were blocked by either AMPK inhibition or Sirt3 knockdown. Our findings demonstrate that RSV attenuates SIH by activating the AMPK/Sirt3 pathway, thereby reducing RVLM oxidative stress and cell death.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108394"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.108394","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neuronal hyperexcitability in the rostral ventrolateral medulla (RVLM), driven by oxidative stress, plays a crucial role in stress-induced hypertension (SIH). While resveratrol (RSV) is known for its antioxidant properties, its effects on RVLM neurons in SIH remain unclear. We investigated this using an SIH rat model exposed to electric foot shocks and noise stimulation for 15 days. Analysis of RVLM tissue revealed increased mitochondrial damage, oxidative stress, apoptosis, and dysregulated ferroptosis in SIH rats. RSV microinjection into the RVLM reduced blood pressure, sympathetic vascular tone, and neuronal excitability. Both in vivo and in vitro studies showed that RSV treatment alleviated mitochondrial oxidative stress, apoptosis, and ferroptosis through AMPK activation and subsequent Sirt3 upregulation. These therapeutic effects were blocked by either AMPK inhibition or Sirt3 knockdown. Our findings demonstrate that RSV attenuates SIH by activating the AMPK/Sirt3 pathway, thereby reducing RVLM oxidative stress and cell death.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biological Chemistry
Journal of Biological Chemistry Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
4.20%
发文量
1233
期刊介绍: The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信