{"title":"An analysis of performance bottlenecks in MRI preprocessing.","authors":"Mathieu Dugré, Yohan Chatelain, Tristan Glatard","doi":"10.1093/gigascience/giae098","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic resonance imaging (MRI) preprocessing is a critical step for neuroimaging analysis. However, the computational cost of MRI preprocessing pipelines is a major bottleneck for large cohort studies and some clinical applications. While high-performance computing and, more recently, deep learning have been adopted to accelerate the computations, these techniques require costly hardware and are not accessible to all researchers. Therefore, it is important to understand the performance bottlenecks of MRI preprocessing pipelines to improve their performance. Using the Intel VTune profiler, we characterized the bottlenecks of several commonly used MRI preprocessing pipelines from the Advanced Normalization Tools (ANTs), FMRIB Software Library, and FreeSurfer toolboxes. We found few functions contributed to most of the CPU time and that linear interpolation was the largest contributor. Data access was also a substantial bottleneck. We identified a bug in the Insight Segmentation and Registration Toolkit library that impacts the performance of the ANTs pipeline in single precision and a potential issue with the OpenMP scaling in FreeSurfer recon-all. Our results provide a reference for future efforts to optimize MRI preprocessing pipelines.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"14 ","pages":""},"PeriodicalIF":11.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11899568/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giae098","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetic resonance imaging (MRI) preprocessing is a critical step for neuroimaging analysis. However, the computational cost of MRI preprocessing pipelines is a major bottleneck for large cohort studies and some clinical applications. While high-performance computing and, more recently, deep learning have been adopted to accelerate the computations, these techniques require costly hardware and are not accessible to all researchers. Therefore, it is important to understand the performance bottlenecks of MRI preprocessing pipelines to improve their performance. Using the Intel VTune profiler, we characterized the bottlenecks of several commonly used MRI preprocessing pipelines from the Advanced Normalization Tools (ANTs), FMRIB Software Library, and FreeSurfer toolboxes. We found few functions contributed to most of the CPU time and that linear interpolation was the largest contributor. Data access was also a substantial bottleneck. We identified a bug in the Insight Segmentation and Registration Toolkit library that impacts the performance of the ANTs pipeline in single precision and a potential issue with the OpenMP scaling in FreeSurfer recon-all. Our results provide a reference for future efforts to optimize MRI preprocessing pipelines.
期刊介绍:
GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.