An analysis of performance bottlenecks in MRI preprocessing.

IF 11.8 2区 生物学 Q1 MULTIDISCIPLINARY SCIENCES
Mathieu Dugré, Yohan Chatelain, Tristan Glatard
{"title":"An analysis of performance bottlenecks in MRI preprocessing.","authors":"Mathieu Dugré, Yohan Chatelain, Tristan Glatard","doi":"10.1093/gigascience/giae098","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic resonance imaging (MRI) preprocessing is a critical step for neuroimaging analysis. However, the computational cost of MRI preprocessing pipelines is a major bottleneck for large cohort studies and some clinical applications. While high-performance computing and, more recently, deep learning have been adopted to accelerate the computations, these techniques require costly hardware and are not accessible to all researchers. Therefore, it is important to understand the performance bottlenecks of MRI preprocessing pipelines to improve their performance. Using the Intel VTune profiler, we characterized the bottlenecks of several commonly used MRI preprocessing pipelines from the Advanced Normalization Tools (ANTs), FMRIB Software Library, and FreeSurfer toolboxes. We found few functions contributed to most of the CPU time and that linear interpolation was the largest contributor. Data access was also a substantial bottleneck. We identified a bug in the Insight Segmentation and Registration Toolkit library that impacts the performance of the ANTs pipeline in single precision and a potential issue with the OpenMP scaling in FreeSurfer recon-all. Our results provide a reference for future efforts to optimize MRI preprocessing pipelines.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"14 ","pages":""},"PeriodicalIF":11.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11899568/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giae098","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic resonance imaging (MRI) preprocessing is a critical step for neuroimaging analysis. However, the computational cost of MRI preprocessing pipelines is a major bottleneck for large cohort studies and some clinical applications. While high-performance computing and, more recently, deep learning have been adopted to accelerate the computations, these techniques require costly hardware and are not accessible to all researchers. Therefore, it is important to understand the performance bottlenecks of MRI preprocessing pipelines to improve their performance. Using the Intel VTune profiler, we characterized the bottlenecks of several commonly used MRI preprocessing pipelines from the Advanced Normalization Tools (ANTs), FMRIB Software Library, and FreeSurfer toolboxes. We found few functions contributed to most of the CPU time and that linear interpolation was the largest contributor. Data access was also a substantial bottleneck. We identified a bug in the Insight Segmentation and Registration Toolkit library that impacts the performance of the ANTs pipeline in single precision and a potential issue with the OpenMP scaling in FreeSurfer recon-all. Our results provide a reference for future efforts to optimize MRI preprocessing pipelines.

求助全文
约1分钟内获得全文 求助全文
来源期刊
GigaScience
GigaScience MULTIDISCIPLINARY SCIENCES-
CiteScore
15.50
自引率
1.10%
发文量
119
审稿时长
1 weeks
期刊介绍: GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信