An analysis of performance bottlenecks in MRI preprocessing.

IF 11.8 2区 生物学 Q1 MULTIDISCIPLINARY SCIENCES
Mathieu Dugré, Yohan Chatelain, Tristan Glatard
{"title":"An analysis of performance bottlenecks in MRI preprocessing.","authors":"Mathieu Dugré, Yohan Chatelain, Tristan Glatard","doi":"10.1093/gigascience/giae098","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic resonance imaging (MRI) preprocessing is a critical step for neuroimaging analysis. However, the computational cost of MRI preprocessing pipelines is a major bottleneck for large cohort studies and some clinical applications. While high-performance computing and, more recently, deep learning have been adopted to accelerate the computations, these techniques require costly hardware and are not accessible to all researchers. Therefore, it is important to understand the performance bottlenecks of MRI preprocessing pipelines to improve their performance. Using the Intel VTune profiler, we characterized the bottlenecks of several commonly used MRI preprocessing pipelines from the Advanced Normalization Tools (ANTs), FMRIB Software Library, and FreeSurfer toolboxes. We found few functions contributed to most of the CPU time and that linear interpolation was the largest contributor. Data access was also a substantial bottleneck. We identified a bug in the Insight Segmentation and Registration Toolkit library that impacts the performance of the ANTs pipeline in single precision and a potential issue with the OpenMP scaling in FreeSurfer recon-all. Our results provide a reference for future efforts to optimize MRI preprocessing pipelines.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"14 ","pages":""},"PeriodicalIF":11.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11899568/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giae098","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic resonance imaging (MRI) preprocessing is a critical step for neuroimaging analysis. However, the computational cost of MRI preprocessing pipelines is a major bottleneck for large cohort studies and some clinical applications. While high-performance computing and, more recently, deep learning have been adopted to accelerate the computations, these techniques require costly hardware and are not accessible to all researchers. Therefore, it is important to understand the performance bottlenecks of MRI preprocessing pipelines to improve their performance. Using the Intel VTune profiler, we characterized the bottlenecks of several commonly used MRI preprocessing pipelines from the Advanced Normalization Tools (ANTs), FMRIB Software Library, and FreeSurfer toolboxes. We found few functions contributed to most of the CPU time and that linear interpolation was the largest contributor. Data access was also a substantial bottleneck. We identified a bug in the Insight Segmentation and Registration Toolkit library that impacts the performance of the ANTs pipeline in single precision and a potential issue with the OpenMP scaling in FreeSurfer recon-all. Our results provide a reference for future efforts to optimize MRI preprocessing pipelines.

MRI预处理中的性能瓶颈分析。
磁共振成像(MRI)预处理是神经成像分析的关键步骤。然而,MRI预处理管道的计算成本是大型队列研究和一些临床应用的主要瓶颈。虽然高性能计算和最近的深度学习已被用于加速计算,但这些技术需要昂贵的硬件,并且并非所有研究人员都可以使用。因此,了解MRI预处理管道的性能瓶颈对提高其性能至关重要。使用英特尔VTune分析器,我们从Advanced Normalization Tools (ANTs)、FMRIB Software Library和FreeSurfer工具箱中描述了几种常用的MRI预处理管道的瓶颈。我们发现很少有函数占用大部分CPU时间,线性插值是最大的贡献者。数据访问也是一个重要的瓶颈。我们发现了Insight Segmentation and Registration Toolkit库中的一个bug,它会影响单精度下ANTs管道的性能,并且在FreeSurfer recon-all中存在OpenMP缩放的潜在问题。我们的研究结果为进一步优化MRI预处理流程提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
GigaScience
GigaScience MULTIDISCIPLINARY SCIENCES-
CiteScore
15.50
自引率
1.10%
发文量
119
审稿时长
1 weeks
期刊介绍: GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信