A 4-year cohort study of the effects of PNPLA3 rs738409 genotypes on liver fat and fibrosis and gut microbiota in a non-fatty liver population.

IF 4 3区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Satoshi Sato, Chikara Iino, Takafumi Sasada, Keisuke Furusawa, Kenta Yoshida, Kaori Sawada, Tatsuya Mikami, Shinsaku Fukuda, Shigeyuki Nakaji, Hirotake Sakuraba
{"title":"A 4-year cohort study of the effects of PNPLA3 rs738409 genotypes on liver fat and fibrosis and gut microbiota in a non-fatty liver population.","authors":"Satoshi Sato, Chikara Iino, Takafumi Sasada, Keisuke Furusawa, Kenta Yoshida, Kaori Sawada, Tatsuya Mikami, Shinsaku Fukuda, Shigeyuki Nakaji, Hirotake Sakuraba","doi":"10.1265/ehpm.24-00365","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Many factors are associated with the development and progression of liver fat and fibrosis; however, genetics and the gut microbiota are representative factors. Moreover, recent studies have indicated a link between host genes and the gut microbiota. This study investigated the effect of patatin-like phospholipase domain-containing 3 (PNPLA3) rs738409 (C > G), which has been reported to be most involved in the onset and progression of fatty liver, on liver fat and fibrosis in a cohort study related to gut microbiota in a non-fatty liver population.</p><p><strong>Methods: </strong>This cohort study included 214 participants from the health check-up project in 2018 and 2022 who had non-fatty liver with controlled attenuation parameter (CAP) values <248 dB/m by FibroScan and were non-drinkers. Changes in CAP values and liver stiffness measurement (LSM), liver-related items, and gut microbiota from 2018 to 2022 were investigated separately for PNPLA3 rs738409 CC, CG, and GG genotypes.</p><p><strong>Results: </strong>Baseline values showed no difference among the PNPLA3 rs738409 genotypes for any of the measurement items. From 2018 to 2022, the PNPLA3 rs738409 CG and GG genotype groups showed a significant increase in CAP and body mass index; no significant change was observed in the CC genotype group. LSM increased in all genotypes, but the rate of increase was highest in the GG genotype, followed by the CG and CC genotypes. Fasting blood glucose levels increased in all genotypes; however, HOMA-IR (Homeostasis Model Assessment of Insulin Resistance) increased significantly only in the GG genotype. HDL (high-density lipoprotein) and LDL (low-density lipoprotein) cholesterol levels significantly increased in all genotypes, whereas triglycerides did not show any significant changes in any genotype. As for the gut microbiota, the relative abundance of Feacalibacterium in the PNPLA3 rs738409 GG genotype decreased by 2% over 4 years, more than 2-fold compared to CC and GG genotypes. Blautia increased significantly in the CC group.</p><p><strong>Conclusion: </strong>The results suggest that PNPLA3 G-allele carriers of non-fatty liver develop liver fat and fibrosis due to not only obesity and insulin resistance but also the deterioration of gut microbiota, which may require a relatively long course of time, even years.</p>","PeriodicalId":11707,"journal":{"name":"Environmental Health and Preventive Medicine","volume":"30 ","pages":"17"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Health and Preventive Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1265/ehpm.24-00365","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Many factors are associated with the development and progression of liver fat and fibrosis; however, genetics and the gut microbiota are representative factors. Moreover, recent studies have indicated a link between host genes and the gut microbiota. This study investigated the effect of patatin-like phospholipase domain-containing 3 (PNPLA3) rs738409 (C > G), which has been reported to be most involved in the onset and progression of fatty liver, on liver fat and fibrosis in a cohort study related to gut microbiota in a non-fatty liver population.

Methods: This cohort study included 214 participants from the health check-up project in 2018 and 2022 who had non-fatty liver with controlled attenuation parameter (CAP) values <248 dB/m by FibroScan and were non-drinkers. Changes in CAP values and liver stiffness measurement (LSM), liver-related items, and gut microbiota from 2018 to 2022 were investigated separately for PNPLA3 rs738409 CC, CG, and GG genotypes.

Results: Baseline values showed no difference among the PNPLA3 rs738409 genotypes for any of the measurement items. From 2018 to 2022, the PNPLA3 rs738409 CG and GG genotype groups showed a significant increase in CAP and body mass index; no significant change was observed in the CC genotype group. LSM increased in all genotypes, but the rate of increase was highest in the GG genotype, followed by the CG and CC genotypes. Fasting blood glucose levels increased in all genotypes; however, HOMA-IR (Homeostasis Model Assessment of Insulin Resistance) increased significantly only in the GG genotype. HDL (high-density lipoprotein) and LDL (low-density lipoprotein) cholesterol levels significantly increased in all genotypes, whereas triglycerides did not show any significant changes in any genotype. As for the gut microbiota, the relative abundance of Feacalibacterium in the PNPLA3 rs738409 GG genotype decreased by 2% over 4 years, more than 2-fold compared to CC and GG genotypes. Blautia increased significantly in the CC group.

Conclusion: The results suggest that PNPLA3 G-allele carriers of non-fatty liver develop liver fat and fibrosis due to not only obesity and insulin resistance but also the deterioration of gut microbiota, which may require a relatively long course of time, even years.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Health and Preventive Medicine
Environmental Health and Preventive Medicine PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH -
CiteScore
7.90
自引率
2.10%
发文量
44
审稿时长
10 weeks
期刊介绍: The official journal of the Japanese Society for Hygiene, Environmental Health and Preventive Medicine (EHPM) brings a comprehensive approach to prevention and environmental health related to medical, biological, molecular biological, genetic, physical, psychosocial, chemical, and other environmental factors. Environmental Health and Preventive Medicine features definitive studies on human health sciences and provides comprehensive and unique information to a worldwide readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信