Transdifferentiation of plasmatocytes to crystal cells in the lymph gland of Drosophila melanogaster.

IF 6.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Julien Marcetteau, Patrícia Duarte, Alexandre B Leitão, Élio Sucena
{"title":"Transdifferentiation of plasmatocytes to crystal cells in the lymph gland of Drosophila melanogaster.","authors":"Julien Marcetteau, Patrícia Duarte, Alexandre B Leitão, Élio Sucena","doi":"10.1038/s44319-025-00366-z","DOIUrl":null,"url":null,"abstract":"<p><p>Under homeostatic conditions, haematopoiesis in Drosophila larvae occurs in the lymph gland and sessile haemocyte clusters to produce two functionally and morphologically different cells: plasmatocytes and crystal cells. It is well-established that in the lymph gland both cell types stem from a binary decision of the medullary prohaemocyte precursors. However, in sessile clusters and dorsal vessel, crystal cells have been shown to originate from the transdifferentiation of plasmatocytes in a Notch/Serrate-dependent manner. We show that transdifferentiation occurs also in the lymph gland. In vivo phagocytosis assays confirm that cortical plasmatocytes are functionally differentiated phagocytic cells. We uncover a double-positive population in the cortical zone that lineage-tracing and long-term live imaging experiments show will differentiate into crystal cells. The reduction of Notch levels within the lymph gland plasmatocyte population reduces crystal cell number. This extension of a transdifferentiation mechanism reinforces the growing role of haematopoietic plasticity in maintaining homeostasis in Drosophila and vertebrate systems. Future work should test the regulation and relative contribution of these two processes under different immunological and/or metabolic conditions.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-025-00366-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Under homeostatic conditions, haematopoiesis in Drosophila larvae occurs in the lymph gland and sessile haemocyte clusters to produce two functionally and morphologically different cells: plasmatocytes and crystal cells. It is well-established that in the lymph gland both cell types stem from a binary decision of the medullary prohaemocyte precursors. However, in sessile clusters and dorsal vessel, crystal cells have been shown to originate from the transdifferentiation of plasmatocytes in a Notch/Serrate-dependent manner. We show that transdifferentiation occurs also in the lymph gland. In vivo phagocytosis assays confirm that cortical plasmatocytes are functionally differentiated phagocytic cells. We uncover a double-positive population in the cortical zone that lineage-tracing and long-term live imaging experiments show will differentiate into crystal cells. The reduction of Notch levels within the lymph gland plasmatocyte population reduces crystal cell number. This extension of a transdifferentiation mechanism reinforces the growing role of haematopoietic plasticity in maintaining homeostasis in Drosophila and vertebrate systems. Future work should test the regulation and relative contribution of these two processes under different immunological and/or metabolic conditions.

黑腹果蝇淋巴浆细胞向晶体细胞的转分化。
在平衡条件下,果蝇幼虫的造血发生在淋巴腺和无柄血细胞簇中,产生两种功能和形态不同的细胞:浆细胞和晶体细胞。在淋巴腺中,这两种细胞类型都源自髓质原血细胞前体的二元决定。然而,在无柄细胞簇和背侧血管中,晶体细胞已被证明是以Notch/Serrate依赖性方式来源于浆细胞的转分化。我们的研究表明,淋巴腺也会发生转分化。体内吞噬试验证实,皮质浆细胞是功能分化的吞噬细胞。我们在皮质区发现了双阳性细胞群,系谱追踪和长期活体成像实验表明,该细胞群将分化为晶体细胞。淋巴腺浆细胞群中 Notch 水平的降低减少了晶体细胞的数量。这一转分化机制的扩展加强了造血可塑性在果蝇和脊椎动物系统中维持平衡方面日益重要的作用。未来的工作应测试这两个过程在不同免疫和/或代谢条件下的调节和相对贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EMBO Reports
EMBO Reports 生物-生化与分子生物学
CiteScore
11.20
自引率
1.30%
发文量
267
审稿时长
1 months
期刊介绍: EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings. The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that: Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels. Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies. Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding. Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts. EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry. 
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信