{"title":"Neutrophil-modulated Dicer expression in macrophages influences inflammation resolution.","authors":"Zhishang Wang, Wenhua Li, Jia Li, Tianrong Jin, Hong Chen, Feihong Liang, Shengran Liu, Jialin Jia, Tingting Liu, Yu Liu, Liming Yu, Xiaodong Xue, Jikai Zhao, Tao Huang, Xinyi Huang, Huishan Wang, Yongsheng Li, Bangwei Luo, Zhiren Zhang","doi":"10.1007/s00018-025-05644-6","DOIUrl":null,"url":null,"abstract":"<p><p>The precise molecular mechanisms through which neutrophils regulate macrophages in the progression and resolution of acute inflammation remain poorly understood. Here, we present new findings on the role of Dicer in regulating macrophage phenotypic transitions essential for proper inflammatory progression and resolution, influenced by neutrophils. Using a zymosan A (Zym A)-induced self-limited mouse peritonitis model, we observed that Dicer expression in macrophages was significantly reduced by neutrophil-derived IFN-γ during the progression phase, but gradually returned to normal levels during the resolution phase following the engulfment of apoptotic neutrophils. Our study on macrophage-specific Dicer1-depletion (Dicer1-CKO) mice demonstrated that inflammation in these mice was more severe during the progression phase, characterized by increased pro-inflammatory cytokines and enhanced neutrophil trafficking. Additionally, resolution was impaired in Dicer1-CKO mice, leading to the accumulation of uncleared apoptotic neutrophils. Specifically, the absence of Dicer in macrophages resulted in M1 polarization and heightened bactericidal activity, facilitating the progression of acute inflammation. Conversely, inducing Dicer expression promoted macrophage transition to M2 polarization, enhancing apoptotic cell clearance and expediting the resolution of inflammation. Our findings suggest that Dicer plays a central role in regulating the progression and resolution of acute inflammation, with implications for the treatment of inflammatory diseases.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"114"},"PeriodicalIF":6.2000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11904050/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-025-05644-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The precise molecular mechanisms through which neutrophils regulate macrophages in the progression and resolution of acute inflammation remain poorly understood. Here, we present new findings on the role of Dicer in regulating macrophage phenotypic transitions essential for proper inflammatory progression and resolution, influenced by neutrophils. Using a zymosan A (Zym A)-induced self-limited mouse peritonitis model, we observed that Dicer expression in macrophages was significantly reduced by neutrophil-derived IFN-γ during the progression phase, but gradually returned to normal levels during the resolution phase following the engulfment of apoptotic neutrophils. Our study on macrophage-specific Dicer1-depletion (Dicer1-CKO) mice demonstrated that inflammation in these mice was more severe during the progression phase, characterized by increased pro-inflammatory cytokines and enhanced neutrophil trafficking. Additionally, resolution was impaired in Dicer1-CKO mice, leading to the accumulation of uncleared apoptotic neutrophils. Specifically, the absence of Dicer in macrophages resulted in M1 polarization and heightened bactericidal activity, facilitating the progression of acute inflammation. Conversely, inducing Dicer expression promoted macrophage transition to M2 polarization, enhancing apoptotic cell clearance and expediting the resolution of inflammation. Our findings suggest that Dicer plays a central role in regulating the progression and resolution of acute inflammation, with implications for the treatment of inflammatory diseases.
期刊介绍:
Journal Name: Cellular and Molecular Life Sciences (CMLS)
Location: Basel, Switzerland
Focus:
Multidisciplinary journal
Publishes research articles, reviews, multi-author reviews, and visions & reflections articles
Coverage:
Latest aspects of biological and biomedical research
Areas include:
Biochemistry and molecular biology
Cell biology
Molecular and cellular aspects of biomedicine
Neuroscience
Pharmacology
Immunology
Additional Features:
Welcomes comments on any article published in CMLS
Accepts suggestions for topics to be covered