Xinling Zhang, Yuhang Zhang, Xirui Peng, Luxiang Yang, Jingwen Miao, Yuyang Yue, Yong Wang, Xiaoyang Wang, Changlian Zhu, Juan Song
{"title":"Targeting Neuroinflammation in Preterm White Matter Injury: Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes.","authors":"Xinling Zhang, Yuhang Zhang, Xirui Peng, Luxiang Yang, Jingwen Miao, Yuyang Yue, Yong Wang, Xiaoyang Wang, Changlian Zhu, Juan Song","doi":"10.1007/s10571-025-01540-6","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroinflammation is a key factor in the development of preterm white matter injury (PWMI), leading to glial cell dysfunction, arrest of oligodendrocyte maturation, and long-term neurological damage. As a potential therapeutic strategy, mesenchymal stem cells (MSCs) exhibit significant immunomodulatory and regenerative potential. Recent studies suggest that the primary mechanism of MSC action is their paracrine effects, particularly mediated by extracellular vesicles, with MSC-derived exosomes (MSC-Exos) being the key mediators. MSC-Exos, enriched with lipids, proteins, and nucleic acids, regulate neuroinflammation by modulating glial cell activity and influencing signaling pathways associated with inflammation and repair. Preclinical evidence has indicated that MSC-Exos can suppress the activation of microglia and astrocytes, promote oligodendrocyte maturation, and enhance myelination, highlighting their potential as a cell-free treatment for PWMI. However, there are a paucity of comprehensive reviews on how MSC-Exos regulate neuroinflammation in PWMI through specific signaling pathways. This review aims to summarize the key signaling pathways through which MSC-Exos modulate neuroinflammation in PWMI and discuss the challenges associated with the clinical application of MSC-Exos-based therapies.</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":"45 1","pages":"23"},"PeriodicalIF":3.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11903990/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10571-025-01540-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neuroinflammation is a key factor in the development of preterm white matter injury (PWMI), leading to glial cell dysfunction, arrest of oligodendrocyte maturation, and long-term neurological damage. As a potential therapeutic strategy, mesenchymal stem cells (MSCs) exhibit significant immunomodulatory and regenerative potential. Recent studies suggest that the primary mechanism of MSC action is their paracrine effects, particularly mediated by extracellular vesicles, with MSC-derived exosomes (MSC-Exos) being the key mediators. MSC-Exos, enriched with lipids, proteins, and nucleic acids, regulate neuroinflammation by modulating glial cell activity and influencing signaling pathways associated with inflammation and repair. Preclinical evidence has indicated that MSC-Exos can suppress the activation of microglia and astrocytes, promote oligodendrocyte maturation, and enhance myelination, highlighting their potential as a cell-free treatment for PWMI. However, there are a paucity of comprehensive reviews on how MSC-Exos regulate neuroinflammation in PWMI through specific signaling pathways. This review aims to summarize the key signaling pathways through which MSC-Exos modulate neuroinflammation in PWMI and discuss the challenges associated with the clinical application of MSC-Exos-based therapies.
期刊介绍:
Cellular and Molecular Neurobiology publishes original research concerned with the analysis of neuronal and brain function at the cellular and subcellular levels. The journal offers timely, peer-reviewed articles that describe anatomic, genetic, physiologic, pharmacologic, and biochemical approaches to the study of neuronal function and the analysis of elementary mechanisms. Studies are presented on isolated mammalian tissues and intact animals, with investigations aimed at the molecular mechanisms or neuronal responses at the level of single cells. Cellular and Molecular Neurobiology also presents studies of the effects of neurons on other organ systems, such as analysis of the electrical or biochemical response to neurotransmitters or neurohormones on smooth muscle or gland cells.