Suppression of FOXO1 activity by SIRT1-mediated deacetylation weakening the intratumoral androgen autocrine function in glioblastoma

IF 4.8 3区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yuanchi Cheng, Zhijun Xiao, Weijia Cai, Ting Zhou, Zhen Yang
{"title":"Suppression of FOXO1 activity by SIRT1-mediated deacetylation weakening the intratumoral androgen autocrine function in glioblastoma","authors":"Yuanchi Cheng, Zhijun Xiao, Weijia Cai, Ting Zhou, Zhen Yang","doi":"10.1038/s41417-025-00880-1","DOIUrl":null,"url":null,"abstract":"Elevated levels of androgens in the brain accelerate tumor progression in patients with glioblastoma (GBM). Despite current research efforts concentrating on decreasing peripheral androgens to improve GBM prognosis, results have not met expectations. Herein, we aim to elucidate the source of increased androgen levels in the brains of GBM patients and investigate whether lowering it can improve the prognosis of GBM patients. The Elisa was employed to measure androgen levels. The effects of androgens on U87 cells were evaluated using CCK-8 assays, clone formation assays, wound healing assays, and migration/invasion assays. RNA sequencing, RT-qPCR and Western blotting were performed to assess the expression levels of steroid enzymes, tumor drug resistance, Sirt1, FOXO1genes and proteins. Co-immunoprecipitation (Co-IP) assays were conducted to investigate the interactions and acetylation levels between Sirt1 and FOXO1. Lentiviral transfection was utilized to establish stable cell lines. Furthermore, an in vivo murine subcutaneous tumor model was established to further confirm the role of Sirt1 in tumor progression. We found androgen levels in the cerebrospinal fluid of GBM patients were higher than in the periphery, contrasting with healthy individuals. Additionally, the steroid enzymes in GBM cells were upregulated. Reducing peripheral androgens compensatorily enhances GBM androgen synthesis capacity (CYP17A1, CYP11A1, SRD5A2) and chemo-resistance (ABCB11, BIRC3, FGF2, NRG1), while the levels of androgens in the brain remain consistently high. The above results indicate that the increased androgens in the brain of GBM patients are self-secreted. Further investigations demonstrate that the transcription factor FOXO1 in GBM is regulated by silent information regulator 1 (Sirt1) through deacetylation, leading to enhanced androgen synthesis capacity in vivo and in vitro. Overexpressing Sirt1 significantly lowers brain androgen levels and delays tumor progression in mouse models. Compared to conventional finasteran therapy, the targeted-Sirt1 results in lower brain androgen levels and smaller tumor volumes. Our findings provide evidence that the elevated androgens in the brain of GBM patients came from tumor autocrine. Overexpression of Sirt1 reduces FOXO1 acetylation, lowers androgen synthesis enzyme levels, and effectively decreases brain androgen levels, thereby delaying tumor progression.","PeriodicalId":9577,"journal":{"name":"Cancer gene therapy","volume":"32 3","pages":"343-354"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41417-025-00880-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer gene therapy","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41417-025-00880-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Elevated levels of androgens in the brain accelerate tumor progression in patients with glioblastoma (GBM). Despite current research efforts concentrating on decreasing peripheral androgens to improve GBM prognosis, results have not met expectations. Herein, we aim to elucidate the source of increased androgen levels in the brains of GBM patients and investigate whether lowering it can improve the prognosis of GBM patients. The Elisa was employed to measure androgen levels. The effects of androgens on U87 cells were evaluated using CCK-8 assays, clone formation assays, wound healing assays, and migration/invasion assays. RNA sequencing, RT-qPCR and Western blotting were performed to assess the expression levels of steroid enzymes, tumor drug resistance, Sirt1, FOXO1genes and proteins. Co-immunoprecipitation (Co-IP) assays were conducted to investigate the interactions and acetylation levels between Sirt1 and FOXO1. Lentiviral transfection was utilized to establish stable cell lines. Furthermore, an in vivo murine subcutaneous tumor model was established to further confirm the role of Sirt1 in tumor progression. We found androgen levels in the cerebrospinal fluid of GBM patients were higher than in the periphery, contrasting with healthy individuals. Additionally, the steroid enzymes in GBM cells were upregulated. Reducing peripheral androgens compensatorily enhances GBM androgen synthesis capacity (CYP17A1, CYP11A1, SRD5A2) and chemo-resistance (ABCB11, BIRC3, FGF2, NRG1), while the levels of androgens in the brain remain consistently high. The above results indicate that the increased androgens in the brain of GBM patients are self-secreted. Further investigations demonstrate that the transcription factor FOXO1 in GBM is regulated by silent information regulator 1 (Sirt1) through deacetylation, leading to enhanced androgen synthesis capacity in vivo and in vitro. Overexpressing Sirt1 significantly lowers brain androgen levels and delays tumor progression in mouse models. Compared to conventional finasteran therapy, the targeted-Sirt1 results in lower brain androgen levels and smaller tumor volumes. Our findings provide evidence that the elevated androgens in the brain of GBM patients came from tumor autocrine. Overexpression of Sirt1 reduces FOXO1 acetylation, lowers androgen synthesis enzyme levels, and effectively decreases brain androgen levels, thereby delaying tumor progression.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cancer gene therapy
Cancer gene therapy 医学-生物工程与应用微生物
CiteScore
10.20
自引率
0.00%
发文量
150
审稿时长
4-8 weeks
期刊介绍: Cancer Gene Therapy is the essential gene and cellular therapy resource for cancer researchers and clinicians, keeping readers up to date with the latest developments in gene and cellular therapies for cancer. The journal publishes original laboratory and clinical research papers, case reports and review articles. Publication topics include RNAi approaches, drug resistance, hematopoietic progenitor cell gene transfer, cancer stem cells, cellular therapies, homologous recombination, ribozyme technology, antisense technology, tumor immunotherapy and tumor suppressors, translational research, cancer therapy, gene delivery systems (viral and non-viral), anti-gene therapy (antisense, siRNA & ribozymes), apoptosis; mechanisms and therapies, vaccine development, immunology and immunotherapy, DNA synthesis and repair. Cancer Gene Therapy publishes the results of laboratory investigations, preclinical studies, and clinical trials in the field of gene transfer/gene therapy and cellular therapies as applied to cancer research. Types of articles published include original research articles; case reports; brief communications; review articles in the main fields of drug resistance/sensitivity, gene therapy, cellular therapy, tumor suppressor and anti-oncogene therapy, cytokine/tumor immunotherapy, etc.; industry perspectives; and letters to the editor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信