From Dyadic to Higher-Order Interactions: Enhanced Representation of Homotopic Functional Connectivity Through Control of Intervening Variables.

IF 2.4 3区 医学 Q3 NEUROSCIENCES
Behdad Khodabandehloo, Payam Jannatdoust, Babak Nadjar Araabi
{"title":"From Dyadic to Higher-Order Interactions: Enhanced Representation of Homotopic Functional Connectivity Through Control of Intervening Variables.","authors":"Behdad Khodabandehloo, Payam Jannatdoust, Babak Nadjar Araabi","doi":"10.1089/brain.2024.0056","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> The brain's complex functionality emerges from network interactions that go beyond dyadic connections, with higher-order interactions significantly contributing to this complexity. Homotopic functional connectivity (HoFC) is a key neurophysiological characteristic of the human brain, reflecting synchronized activity between corresponding regions in the brain's hemispheres. <b><i>Materials and Methods:</i></b> Using resting-state functional magnetic resonance imaging data from the Human Connectome Project, we evaluate dyadic and higher-order interactions of three functional connectivity (FC) parameterizations-bivariate correlation, partial correlation, and tangent space embedding-in their effectiveness at capturing HoFC through the inter-hemispheric analogy test. <b><i>Results:</i></b> Higher-order feature vectors are generated through node2vec, a random walk-based node embedding technique applied to FC networks. Our results show that higher-order feature vectors derived from partial correlation most effectively represent HoFC, while tangent space embedding performs best for dyadic interactions. <b><i>Discussion:</i></b> These findings validate HoFC and underscore the importance of the FC construction method in capturing intrinsic characteristics of the human brain.</p>","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain connectivity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/brain.2024.0056","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The brain's complex functionality emerges from network interactions that go beyond dyadic connections, with higher-order interactions significantly contributing to this complexity. Homotopic functional connectivity (HoFC) is a key neurophysiological characteristic of the human brain, reflecting synchronized activity between corresponding regions in the brain's hemispheres. Materials and Methods: Using resting-state functional magnetic resonance imaging data from the Human Connectome Project, we evaluate dyadic and higher-order interactions of three functional connectivity (FC) parameterizations-bivariate correlation, partial correlation, and tangent space embedding-in their effectiveness at capturing HoFC through the inter-hemispheric analogy test. Results: Higher-order feature vectors are generated through node2vec, a random walk-based node embedding technique applied to FC networks. Our results show that higher-order feature vectors derived from partial correlation most effectively represent HoFC, while tangent space embedding performs best for dyadic interactions. Discussion: These findings validate HoFC and underscore the importance of the FC construction method in capturing intrinsic characteristics of the human brain.

从并矢到高阶相互作用:通过控制干预变量增强同伦泛函连通性。
背景:大脑的复杂功能来自于超越二元连接的网络交互,高阶交互显著地促进了这种复杂性。同位功能连接(HoFC)是人类大脑的一个重要神经生理特征,反映了大脑半球相应区域之间的同步活动。材料和方法:利用来自人类连接组项目的静息状态功能磁共振成像数据,我们评估了三种功能连接(FC)参数化的二元和高阶相互作用——二元相关、偏相关和切空间嵌入——在通过半球间类比测试捕获HoFC方面的有效性。结果:通过node2vec生成高阶特征向量,这是一种应用于FC网络的基于随机行走的节点嵌入技术。我们的研究结果表明,由偏相关衍生的高阶特征向量最有效地表示HoFC,而切空间嵌入对二进相互作用表现最好。讨论:这些发现验证了HoFC,并强调了FC构建方法在捕捉人类大脑内在特征方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain connectivity
Brain connectivity Neuroscience-General Neuroscience
CiteScore
4.80
自引率
0.00%
发文量
80
期刊介绍: Brain Connectivity provides groundbreaking findings in the rapidly advancing field of connectivity research at the systems and network levels. The Journal disseminates information on brain mapping, modeling, novel research techniques, new imaging modalities, preclinical animal studies, and the translation of research discoveries from the laboratory to the clinic. This essential journal fosters the application of basic biological discoveries and contributes to the development of novel diagnostic and therapeutic interventions to recognize and treat a broad range of neurodegenerative and psychiatric disorders such as: Alzheimer’s disease, attention-deficit hyperactivity disorder, posttraumatic stress disorder, epilepsy, traumatic brain injury, stroke, dementia, and depression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信