Modeling charge collection in silicon pixel detectors for proton therapy applications.

IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Alexander Schilling, Max Aehle, Johan Alme, Gergely Gábor Barnaföldi, Gábor Bíró, Tea Bodova, Vyacheslav Borshchov, Anthony van den Brink, Viljar Eikeland, Gregory Feofilov, Christoph Garth, Nicolas R Gauger, Ola Grøttvik, Håvard Helstrup, Sergey Igolkin, Jacob G Johansen, Ralf Keidel, Chinorat Kobdaj, Tobias Kortus, Viktor Leonhardt, Shruti Mehendale, Raju Ningappa Mulawade, Odd Harald Odland, George O'Neill, Gábor Papp, Thomas Peitzmann, Helge Egil Seime Pettersen, Pierluigi Piersimoni, Maksym Protsenko, Max Rauch, Attiq Ur Rehman, Matthias Richter, Dieter Röhrich, Joshua Santana, Joao Seco, Arnon Songmoolnak, Ákos Sudár, Ganesh Tambave, Ihor Tymchuk, Kjetil Ullaland, Monika Varga-Kofarago, Boris Wagner, RenZheng Xiao, Shiming Yang
{"title":"Modeling charge collection in silicon pixel detectors for proton therapy applications.","authors":"Alexander Schilling, Max Aehle, Johan Alme, Gergely Gábor Barnaföldi, Gábor Bíró, Tea Bodova, Vyacheslav Borshchov, Anthony van den Brink, Viljar Eikeland, Gregory Feofilov, Christoph Garth, Nicolas R Gauger, Ola Grøttvik, Håvard Helstrup, Sergey Igolkin, Jacob G Johansen, Ralf Keidel, Chinorat Kobdaj, Tobias Kortus, Viktor Leonhardt, Shruti Mehendale, Raju Ningappa Mulawade, Odd Harald Odland, George O'Neill, Gábor Papp, Thomas Peitzmann, Helge Egil Seime Pettersen, Pierluigi Piersimoni, Maksym Protsenko, Max Rauch, Attiq Ur Rehman, Matthias Richter, Dieter Röhrich, Joshua Santana, Joao Seco, Arnon Songmoolnak, Ákos Sudár, Ganesh Tambave, Ihor Tymchuk, Kjetil Ullaland, Monika Varga-Kofarago, Boris Wagner, RenZheng Xiao, Shiming Yang","doi":"10.1088/2057-1976/adbf9c","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Monolithic active pixel sensors are used for charged particle tracking in many applications, from medical physics to astrophysics. The Bergen pCT collaboration designed a sampling calorimeter for proton computed tomography, based entirely on the ALICE PIxel DEtector (ALPIDE). The same telescope can be used for in-situ range verification in particle therapy. An accurate charge diffusion model is required to convert the deposited energy from Monte Carlo simulations to a cluster of pixels, and to estimate the deposited energy, given an experimentally observed cluster.<i>Approach.</i>We optimize the parameters of different charge diffusion models to experimental data for both proton computed tomography and proton range verification, collected at the Danish Centre for Particle Therapy. We then evaluate the performance of downstream tasks to investigate the impact of charge diffusion modeling.<i>Main results.</i>We find that it is beneficial to optimize application-specific models, with a power law working best for proton computed tomography, and a model based on a 2D Cauchy-Lorentz distribution giving better agreement for range verification. We further highlight the importance of evaluating the downstream tasks with multiple approaches to obtain a range of expected performance metrics for the application.<i>Significance.</i>This work demonstrates the influence of the charge diffusion model on downstream tasks, and recommends a new model for proton range verification with an ALPIDE-based pixel telescope.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/adbf9c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.Monolithic active pixel sensors are used for charged particle tracking in many applications, from medical physics to astrophysics. The Bergen pCT collaboration designed a sampling calorimeter for proton computed tomography, based entirely on the ALICE PIxel DEtector (ALPIDE). The same telescope can be used for in-situ range verification in particle therapy. An accurate charge diffusion model is required to convert the deposited energy from Monte Carlo simulations to a cluster of pixels, and to estimate the deposited energy, given an experimentally observed cluster.Approach.We optimize the parameters of different charge diffusion models to experimental data for both proton computed tomography and proton range verification, collected at the Danish Centre for Particle Therapy. We then evaluate the performance of downstream tasks to investigate the impact of charge diffusion modeling.Main results.We find that it is beneficial to optimize application-specific models, with a power law working best for proton computed tomography, and a model based on a 2D Cauchy-Lorentz distribution giving better agreement for range verification. We further highlight the importance of evaluating the downstream tasks with multiple approaches to obtain a range of expected performance metrics for the application.Significance.This work demonstrates the influence of the charge diffusion model on downstream tasks, and recommends a new model for proton range verification with an ALPIDE-based pixel telescope.

质子治疗用硅像素探测器电荷收集模型。
目标。单片有源像素传感器在许多应用中用于带电粒子跟踪,从医学物理学到天体物理学。卑尔根pCT合作设计了一个质子计算机断层扫描的采样量热计,完全基于ALICE像素探测器(ALPIDE)。同样的望远镜也可以用于粒子治疗的现场距离验证。需要一个精确的电荷扩散模型将沉积能量从蒙特卡罗模拟转换为像素簇,并在给定实验观察到的簇的情况下估计沉积能量。方法。我们优化了不同电荷扩散模型的参数,以质子计算机断层扫描和质子范围验证的实验数据,收集在丹麦粒子治疗中心。然后,我们评估下游任务的性能,以研究电荷扩散建模的影响。主要的结果。我们发现优化特定应用的模型是有益的,其中幂律最适合质子计算机断层扫描,而基于二维柯西-洛伦兹分布的模型对距离验证具有更好的一致性。我们进一步强调了用多种方法评估下游任务的重要性,以获得一系列预期的应用性能指标。意义:这项工作证明了电荷扩散模型对下游任务的影响,并推荐了一种新的模型,用于基于alpide的像素望远镜的质子范围验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical Physics & Engineering Express
Biomedical Physics & Engineering Express RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
2.80
自引率
0.00%
发文量
153
期刊介绍: BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信