Lei Xu , Bao Dai , Lingyun Zhang , Weijian Chen , Shikuo Rong , Jianghong Chen , Muye Song , Ziteng Lan , Yongchen Liu , Linhe Wang , Jinghua Li , Jian Chen , Zeyu Wu
{"title":"UBE2C mediates follicular thyroid carcinoma invasion and metastasis via K29-Specific vimentin ubiquitination","authors":"Lei Xu , Bao Dai , Lingyun Zhang , Weijian Chen , Shikuo Rong , Jianghong Chen , Muye Song , Ziteng Lan , Yongchen Liu , Linhe Wang , Jinghua Li , Jian Chen , Zeyu Wu","doi":"10.1016/j.canlet.2025.217624","DOIUrl":null,"url":null,"abstract":"<div><div>Follicular thyroid carcinoma (FTC) poses significant clinical challenges due to its vascular invasion tendency and distant metastasis potential, leading to poorer patient outcomes compared to other thyroid carcinomas. Although ubiquitin-conjugating enzyme E2C (UBE2C) has been widely studied in various cancers, its specific role in FTC progression remains insufficiently explored. This study demonstrates UBE2C's dual functionality in FTC through clinical analysis and experimental validation. Single-cell RNA sequencing of FTC specimens revealed marked UBE2C upregulation associated with aggressive tumor behavior and unfavorable prognosis. Functional studies showed that UBE2C overexpression paradoxically enhanced cellular proliferation while suppressing migration and invasion through EMT modulation. Mechanistic investigations identified vimentin as a key substrate, where UBE2C mediated K29-linked ubiquitination leading to its degradation. Animal models yielded unexpected findings where UBE2C knockdown reduced primary tumor growth but promoted metastasis, validating its context-dependent roles. These results establish UBE2C as a molecular regulator balancing proliferation and invasion in FTC through post-translational modification of cytoskeletal components, suggesting its therapeutic potential for targeted intervention strategies.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"617 ","pages":"Article 217624"},"PeriodicalIF":9.1000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304383525001880","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Follicular thyroid carcinoma (FTC) poses significant clinical challenges due to its vascular invasion tendency and distant metastasis potential, leading to poorer patient outcomes compared to other thyroid carcinomas. Although ubiquitin-conjugating enzyme E2C (UBE2C) has been widely studied in various cancers, its specific role in FTC progression remains insufficiently explored. This study demonstrates UBE2C's dual functionality in FTC through clinical analysis and experimental validation. Single-cell RNA sequencing of FTC specimens revealed marked UBE2C upregulation associated with aggressive tumor behavior and unfavorable prognosis. Functional studies showed that UBE2C overexpression paradoxically enhanced cellular proliferation while suppressing migration and invasion through EMT modulation. Mechanistic investigations identified vimentin as a key substrate, where UBE2C mediated K29-linked ubiquitination leading to its degradation. Animal models yielded unexpected findings where UBE2C knockdown reduced primary tumor growth but promoted metastasis, validating its context-dependent roles. These results establish UBE2C as a molecular regulator balancing proliferation and invasion in FTC through post-translational modification of cytoskeletal components, suggesting its therapeutic potential for targeted intervention strategies.
期刊介绍:
Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research.
Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy.
By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.