Structural Features of the Thymol-Carvacrol Equimolar Mixture: X-Ray Scattering and Molecular Dynamics.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry B Pub Date : 2025-03-27 Epub Date: 2025-03-12 DOI:10.1021/acs.jpcb.4c07674
Emanuela Mangiacapre, Fabrizio Lo Celso, Alessandro Triolo, Fabio Ramondo, Daniel J M Irving, Ahmad Alhadid, Mirjana Minceva, Olga Russina
{"title":"Structural Features of the Thymol-Carvacrol Equimolar Mixture: X-Ray Scattering and Molecular Dynamics.","authors":"Emanuela Mangiacapre, Fabrizio Lo Celso, Alessandro Triolo, Fabio Ramondo, Daniel J M Irving, Ahmad Alhadid, Mirjana Minceva, Olga Russina","doi":"10.1021/acs.jpcb.4c07674","DOIUrl":null,"url":null,"abstract":"<p><p>We present a structural characterization of a low-transition-temperature mixture (LTTM), consisting of thymol and carvacrol, at an equimolar ratio. Carvacrol and thymol are natural regioisomers of terpenes. When combined at an equimolar ratio, they form a liquid mixture at room temperature, with supercooling capability and glass transition at ca. 210 K. Using small- and wide-angle X-ray scattering and molecular dynamics, we describe the structural complexity within this system. X-ray scattering reveals a low-Q peak at around 0.6 Å<sup>-1</sup>, indicating the existence of mesoscale structural heterogeneities, likely related to the segregation of polar moieties engaged in hydrogen bond (HB) interactions within an aromatic, apolar matrix. These polar interactions are predominantly a result of HBs involving thymol as the HB donor species. The liquid structure is also driven by O-H···π interactions, prevalently due to the ability of the carvacrol π-site to engage in this type of weak interaction as a HB acceptor. Besides, dispersive interactions affect the local arrangement of molecules, with a propensity of carvacrol rings to orient their first neighbors with a perpendicular orientation, while thymol tends to induce a closer approach of other thymol molecules with a preferential parallel alignment. Overall, we observed a complex structural arrangement driven by the interplay of both conventional and weak hydrogen bond interactions, with the aromatic nature of the compounds playing a pivotal role in shaping the system's architecture. Carvacrol and thymol, despite being very similar compounds, are characterized by distinctly different behavior in terms of the interactions they engage in with their neighbors, likely due to the different steric hindrance experienced by their hydroxyl groups, which are close to either a small methyl or a bulky isopropyl group, respectively. Such observations can provide useful hints to develop new solvents with tailored properties.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"3224-3236"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c07674","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We present a structural characterization of a low-transition-temperature mixture (LTTM), consisting of thymol and carvacrol, at an equimolar ratio. Carvacrol and thymol are natural regioisomers of terpenes. When combined at an equimolar ratio, they form a liquid mixture at room temperature, with supercooling capability and glass transition at ca. 210 K. Using small- and wide-angle X-ray scattering and molecular dynamics, we describe the structural complexity within this system. X-ray scattering reveals a low-Q peak at around 0.6 Å-1, indicating the existence of mesoscale structural heterogeneities, likely related to the segregation of polar moieties engaged in hydrogen bond (HB) interactions within an aromatic, apolar matrix. These polar interactions are predominantly a result of HBs involving thymol as the HB donor species. The liquid structure is also driven by O-H···π interactions, prevalently due to the ability of the carvacrol π-site to engage in this type of weak interaction as a HB acceptor. Besides, dispersive interactions affect the local arrangement of molecules, with a propensity of carvacrol rings to orient their first neighbors with a perpendicular orientation, while thymol tends to induce a closer approach of other thymol molecules with a preferential parallel alignment. Overall, we observed a complex structural arrangement driven by the interplay of both conventional and weak hydrogen bond interactions, with the aromatic nature of the compounds playing a pivotal role in shaping the system's architecture. Carvacrol and thymol, despite being very similar compounds, are characterized by distinctly different behavior in terms of the interactions they engage in with their neighbors, likely due to the different steric hindrance experienced by their hydroxyl groups, which are close to either a small methyl or a bulky isopropyl group, respectively. Such observations can provide useful hints to develop new solvents with tailored properties.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信