{"title":"Docetaxel-Loaded Electrospun Nanofibrous Mats for Local Chemotherapy Targeting Positive Surgical Margins in Prostate Cancer.","authors":"Xing Li, Kun Yuan, Yisheng Yin, Yiqun Tian, Zihao Guo, Zhenliang Qin, Xiaoyong Zeng","doi":"10.1021/acs.molpharmaceut.4c01440","DOIUrl":null,"url":null,"abstract":"<p><p>Positive surgical margins following radical prostatectomy significantly contribute to tumor recurrence. While systemic chemotherapy demonstrates limited efficacy in this context, local chemotherapy drug delivery systems based on nanomaterials offer promising strategies to address this issue by modifying drug release kinetics and distribution, thereby enhancing antitumor effects while minimizing the toxicities associated with systemic chemotherapy. In this study, we utilized electrospun nanofibrous mats loaded with docetaxel for sustained drug delivery. In vitro experiments demonstrated that these implantable drug-loaded nanofibrous mats effectively inhibited prostate cancer cell growth, induced cell cycle arrest, and promoted apoptosis. In animal models, these drug-loaded nanofibrous mats exhibited prominent therapeutic effects on positive surgical margins postoperatively. Importantly, docetaxel-loaded nanofibrous mats modulated the tumor immune microenvironment by suppressing M2-like macrophages, increasing the ratio between M1- and M2-like macrophages, and enhancing CD8+ T-cell infiltration. Local administration significantly reduced systemic toxicity compared to systemic chemotherapy. In summary, we developed an implantable electrospun drug-loaded nanofibrous mat for localized docetaxel delivery, which offers a prospective strategy for managing positive surgical margins after surgery.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c01440","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Positive surgical margins following radical prostatectomy significantly contribute to tumor recurrence. While systemic chemotherapy demonstrates limited efficacy in this context, local chemotherapy drug delivery systems based on nanomaterials offer promising strategies to address this issue by modifying drug release kinetics and distribution, thereby enhancing antitumor effects while minimizing the toxicities associated with systemic chemotherapy. In this study, we utilized electrospun nanofibrous mats loaded with docetaxel for sustained drug delivery. In vitro experiments demonstrated that these implantable drug-loaded nanofibrous mats effectively inhibited prostate cancer cell growth, induced cell cycle arrest, and promoted apoptosis. In animal models, these drug-loaded nanofibrous mats exhibited prominent therapeutic effects on positive surgical margins postoperatively. Importantly, docetaxel-loaded nanofibrous mats modulated the tumor immune microenvironment by suppressing M2-like macrophages, increasing the ratio between M1- and M2-like macrophages, and enhancing CD8+ T-cell infiltration. Local administration significantly reduced systemic toxicity compared to systemic chemotherapy. In summary, we developed an implantable electrospun drug-loaded nanofibrous mat for localized docetaxel delivery, which offers a prospective strategy for managing positive surgical margins after surgery.
期刊介绍:
Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development.
Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.