{"title":"UMPPI: Unveiling Multilevel Protein-Peptide Interaction Prediction via Language Models.","authors":"Shuwen Xiong, Jiajie Cai, Hua Shi, Feifei Cui, Zilong Zhang, Leyi Wei","doi":"10.1021/acs.jcim.4c02365","DOIUrl":null,"url":null,"abstract":"<p><p>Protein-peptide interactions are essential to cellular processes and disease mechanisms. Identifying protein-peptide binding residues is critical for understanding peptide function and advancing drug discovery. However, experimental methods are costly and time-intensive, while existing computational approaches often predict interactions or binding residues separately, lack effective feature integration, or rely heavily on limited high-quality structural data. To address these challenges, we propose UMPPI (Unveiling Multilevel Protein-Peptide Interaction), a multiobjective framework based on the pretrained protein language model ESM2. UMPPI simultaneously predicts binary protein-peptide interactions and binding residues on both peptides and proteins through a multiobjective optimization strategy. By integrating ESM2 to encode sequences and extract latent structural information, UMPPI bridges the gap between sequence-based and structure-based methods. Extensive experiments demonstrated that UMPPI successfully captured binary interactions between peptides and proteins and identified the binding residues on peptides and proteins. UMPPI can serve as a useful tool for protein-peptide interaction prediction and identification of critical binding residues, thereby facilitating the peptide drug discovery process.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c02365","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Protein-peptide interactions are essential to cellular processes and disease mechanisms. Identifying protein-peptide binding residues is critical for understanding peptide function and advancing drug discovery. However, experimental methods are costly and time-intensive, while existing computational approaches often predict interactions or binding residues separately, lack effective feature integration, or rely heavily on limited high-quality structural data. To address these challenges, we propose UMPPI (Unveiling Multilevel Protein-Peptide Interaction), a multiobjective framework based on the pretrained protein language model ESM2. UMPPI simultaneously predicts binary protein-peptide interactions and binding residues on both peptides and proteins through a multiobjective optimization strategy. By integrating ESM2 to encode sequences and extract latent structural information, UMPPI bridges the gap between sequence-based and structure-based methods. Extensive experiments demonstrated that UMPPI successfully captured binary interactions between peptides and proteins and identified the binding residues on peptides and proteins. UMPPI can serve as a useful tool for protein-peptide interaction prediction and identification of critical binding residues, thereby facilitating the peptide drug discovery process.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.