Neutral-current background induced by atmospheric neutrinos at large liquid-scintillator detectors: III. Comprehensive prediction for low energy neutrinos
Jie Cheng, Min Li, Yu-Feng Li, Gao-Song Li, Hao-Qi Lu, Liang-Jian Wen
{"title":"Neutral-current background induced by atmospheric neutrinos at large liquid-scintillator detectors: III. Comprehensive prediction for low energy neutrinos","authors":"Jie Cheng, Min Li, Yu-Feng Li, Gao-Song Li, Hao-Qi Lu, Liang-Jian Wen","doi":"10.1140/epjc/s10052-025-14009-z","DOIUrl":null,"url":null,"abstract":"<div><p>Atmospheric neutrinos play a vital role in generating irreducible backgrounds in liquid-scintillator (LS) detectors via their neutral-current (NC) interactions with <sup>12</sup>C nuclei. These interactions may affect a wide range of research areas from the MeV to GeV energy range, such as the reactor and geo neutrinos, diffuse supernova neutrino background (DSNB), dark matter, and nucleon decay searches. In this work, we extend our preceding paper (Cheng et al. in Phys. Rev. D 103(5):053001, 2021), by conducting a first-time systematic exploration of NC backgrounds as low as the MeV region of reactor and geo neutrinos. We utilize up-to-date neutrino generator models from GENIE and NuWro, a TALYS-based nuclear deexcitation package and a GEANT4-based detector simulation toolkit for our complete calculation. Our primary focus is to predict the NC background for experimental searches of inverse-beta-decay signals below the 100 MeV visible energy. In order to have deeper understanding of the characteristics of atmospheric neutrino NC interactions in LS, we investigate the model dependence of NC background predictions by using various data-driven models, including the initial neutrino-nucleon interactions, nuclear ground-state structure, final-state interactions, nuclear deexcitation processes, and secondary interactions of final-state particles.\n</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 3","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14009-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-14009-z","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
Atmospheric neutrinos play a vital role in generating irreducible backgrounds in liquid-scintillator (LS) detectors via their neutral-current (NC) interactions with 12C nuclei. These interactions may affect a wide range of research areas from the MeV to GeV energy range, such as the reactor and geo neutrinos, diffuse supernova neutrino background (DSNB), dark matter, and nucleon decay searches. In this work, we extend our preceding paper (Cheng et al. in Phys. Rev. D 103(5):053001, 2021), by conducting a first-time systematic exploration of NC backgrounds as low as the MeV region of reactor and geo neutrinos. We utilize up-to-date neutrino generator models from GENIE and NuWro, a TALYS-based nuclear deexcitation package and a GEANT4-based detector simulation toolkit for our complete calculation. Our primary focus is to predict the NC background for experimental searches of inverse-beta-decay signals below the 100 MeV visible energy. In order to have deeper understanding of the characteristics of atmospheric neutrino NC interactions in LS, we investigate the model dependence of NC background predictions by using various data-driven models, including the initial neutrino-nucleon interactions, nuclear ground-state structure, final-state interactions, nuclear deexcitation processes, and secondary interactions of final-state particles.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.