Taveen Singh Kapoor, Gupta Anurag, Chimurkar Navinya, Saurabh Lonkar, Kajal Yadav, Ramya Sunder Raman, Chandra Venkataraman and Harish C. Phuleria
{"title":"Emissions from agricultural fires in India: field measurements of climate relevant aerosol chemical and optical properties†","authors":"Taveen Singh Kapoor, Gupta Anurag, Chimurkar Navinya, Saurabh Lonkar, Kajal Yadav, Ramya Sunder Raman, Chandra Venkataraman and Harish C. Phuleria","doi":"10.1039/D4EA00104D","DOIUrl":null,"url":null,"abstract":"<p >Carbonaceous aerosol particles are associated with large uncertainties in their climate impacts because of incomplete knowledge of their optical properties and emission magnitudes. Biomass-burning sources significantly contribute to carbonaceous aerosol emissions in India, with crop residue burning being crucial during post-harvest months. Here, for the first time, we study the chemical and optical properties of emission aerosols using <em>in situ</em> real-time and filter-based measurements from significantly contributing crop residue straws, stalks, and stems in India. Emitted particles exhibited optical behaviour characteristic of the brown-black carbon absorption continuum, with large mass absorption cross-sections (MAC<small><sub>520</sub></small>: 8.2 ± 9.6 m<small><sup>2</sup></small> g<small><sup>−1</sup></small>) and small absorption Angström exponents (AAE<small><sub>370/660</sub></small>: 1.97 ± 0.81). They contain significant amounts of lower volatility organic (OC<small><sub>LV</sub></small>) and elemental carbon fractions. The relative abundances of OC<small><sub>LV</sub></small> correlate positively with MAC<small><sub>520</sub></small> and negatively with AAE<small><sub>370/660</sub></small>, implying significant absorption exerted by OC<small><sub>LV</sub></small>, with likely atmospheric persistence. Additionally, we measured emission factors for a complete list of particulate chemical constituents. Emission factors of elemental carbon are larger than those in earlier studies, indicating a 1.6–3.8 times increase in the climate warming potential of the emitted particles from crop residue burning. The intrinsic property measurements and the emissions estimates made here can aid climate modelling efforts that underestimate aerosol absorption in the region.</p>","PeriodicalId":72942,"journal":{"name":"Environmental science: atmospheres","volume":" 3","pages":" 316-331"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ea/d4ea00104d?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental science: atmospheres","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ea/d4ea00104d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Carbonaceous aerosol particles are associated with large uncertainties in their climate impacts because of incomplete knowledge of their optical properties and emission magnitudes. Biomass-burning sources significantly contribute to carbonaceous aerosol emissions in India, with crop residue burning being crucial during post-harvest months. Here, for the first time, we study the chemical and optical properties of emission aerosols using in situ real-time and filter-based measurements from significantly contributing crop residue straws, stalks, and stems in India. Emitted particles exhibited optical behaviour characteristic of the brown-black carbon absorption continuum, with large mass absorption cross-sections (MAC520: 8.2 ± 9.6 m2 g−1) and small absorption Angström exponents (AAE370/660: 1.97 ± 0.81). They contain significant amounts of lower volatility organic (OCLV) and elemental carbon fractions. The relative abundances of OCLV correlate positively with MAC520 and negatively with AAE370/660, implying significant absorption exerted by OCLV, with likely atmospheric persistence. Additionally, we measured emission factors for a complete list of particulate chemical constituents. Emission factors of elemental carbon are larger than those in earlier studies, indicating a 1.6–3.8 times increase in the climate warming potential of the emitted particles from crop residue burning. The intrinsic property measurements and the emissions estimates made here can aid climate modelling efforts that underestimate aerosol absorption in the region.