VI-BEV: Vehicle-Infrastructure Collaborative Perception for 3-D Object Detection on Bird’s-Eye View

IF 4.6 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jingxiong Meng;Junfeng Zhao
{"title":"VI-BEV: Vehicle-Infrastructure Collaborative Perception for 3-D Object Detection on Bird’s-Eye View","authors":"Jingxiong Meng;Junfeng Zhao","doi":"10.1109/OJITS.2025.3543831","DOIUrl":null,"url":null,"abstract":"As infrastructure equipment development matures, leveraging these assets to enhance automated vehicle perception becomes increasingly valuable for more accurate and broader 3D object detection. This paper proposes a straightforward and scalable framework to incorporate infrastructure and vehicle onboard sensors to perform 3D object detection on Bird’s Eye View(BEV) images. And a cross-attention based block is involved in utilizing the interacted information among the sensors for sensor information fusion. Our model gets validated on the online V2X-Sim dataset under two scenarios: the short-range case and the long-range case. Our model demonstrates superior accuracy and broader detection capabilities compared to the baseline model from the experiment results.","PeriodicalId":100631,"journal":{"name":"IEEE Open Journal of Intelligent Transportation Systems","volume":"6 ","pages":"256-265"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10896690","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10896690/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

As infrastructure equipment development matures, leveraging these assets to enhance automated vehicle perception becomes increasingly valuable for more accurate and broader 3D object detection. This paper proposes a straightforward and scalable framework to incorporate infrastructure and vehicle onboard sensors to perform 3D object detection on Bird’s Eye View(BEV) images. And a cross-attention based block is involved in utilizing the interacted information among the sensors for sensor information fusion. Our model gets validated on the online V2X-Sim dataset under two scenarios: the short-range case and the long-range case. Our model demonstrates superior accuracy and broader detection capabilities compared to the baseline model from the experiment results.
v - bev:基于鸟瞰视角的车辆-基础设施协同感知三维目标检测
随着基础设施设备发展的成熟,利用这些资产来增强自动车辆感知,对于更准确、更广泛的3D目标检测变得越来越有价值。本文提出了一个简单且可扩展的框架,将基础设施和车载传感器结合起来,在鸟瞰(BEV)图像上执行3D目标检测。利用传感器间的交互信息进行传感器信息融合,涉及到基于交叉注意的块。我们的模型在V2X-Sim在线数据集上进行了两种情况的验证:短程情况和远程情况。与实验结果的基线模型相比,我们的模型显示出更高的准确性和更广泛的检测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信