Symbolic Knowledge Reasoning on Hyper-Relational Knowledge Graphs

IF 7.5 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Zikang Wang;Linjing Li;Daniel Dajun Zeng
{"title":"Symbolic Knowledge Reasoning on Hyper-Relational Knowledge Graphs","authors":"Zikang Wang;Linjing Li;Daniel Dajun Zeng","doi":"10.1109/TBDATA.2024.3423670","DOIUrl":null,"url":null,"abstract":"Knowledge reasoning has been widely researched in knowledge graphs (KGs), but there has been relatively less research on hyper-relational KGs, which also plays an important role in downstream tasks. Existing reasoning methods on hyper-relational KGs are based on representation learning. Though this approach is effective, it lacks interpretability and ignores the graph structure information. In this paper, we make the first attempt at symbolic reasoning on hyper-relational KGs. We introduce rule extraction methods based on both individual facts and paths, and propose a rule-based symbolic reasoning approach, HyperPath. This approach is simple and interpretable, it can serve as a baseline model for symbolic reasoning in hyper-relational KGs. We provide experimental results on almost all datasets, including five large-scale datasets and seven sub-datasets of them. Experiments show that the expressive power of the proposed model is similar to simple neural networks like convolutional networks, but not as advanced as more complex networks such as Transformer and graph convolutional networks, which is consistent with the performance of symbolic methods on KGs. Furthermore, we also analyze the impact of rule length and hyperparameters on the model's performance, which can provide insights for future research in hypergraph symbolic reasoning.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"11 2","pages":"578-590"},"PeriodicalIF":7.5000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10587109/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Knowledge reasoning has been widely researched in knowledge graphs (KGs), but there has been relatively less research on hyper-relational KGs, which also plays an important role in downstream tasks. Existing reasoning methods on hyper-relational KGs are based on representation learning. Though this approach is effective, it lacks interpretability and ignores the graph structure information. In this paper, we make the first attempt at symbolic reasoning on hyper-relational KGs. We introduce rule extraction methods based on both individual facts and paths, and propose a rule-based symbolic reasoning approach, HyperPath. This approach is simple and interpretable, it can serve as a baseline model for symbolic reasoning in hyper-relational KGs. We provide experimental results on almost all datasets, including five large-scale datasets and seven sub-datasets of them. Experiments show that the expressive power of the proposed model is similar to simple neural networks like convolutional networks, but not as advanced as more complex networks such as Transformer and graph convolutional networks, which is consistent with the performance of symbolic methods on KGs. Furthermore, we also analyze the impact of rule length and hyperparameters on the model's performance, which can provide insights for future research in hypergraph symbolic reasoning.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.80
自引率
2.80%
发文量
114
期刊介绍: The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信