SRODET: Semi-Supervised Remote Sensing Object Detection With Dynamic Pseudo-Labeling

Wenyong Wang;Yuanzheng Cai;Tao Wang
{"title":"SRODET: Semi-Supervised Remote Sensing Object Detection With Dynamic Pseudo-Labeling","authors":"Wenyong Wang;Yuanzheng Cai;Tao Wang","doi":"10.1109/LGRS.2025.3544807","DOIUrl":null,"url":null,"abstract":"To mitigate the impact of noisy labels, many methods prioritize simple samples with reliable labels, often overlooking the valuable information in more challenging samples. This study introduces SRODET, a novel semi-supervised remote sensing object detection model that leverages sample complexity to extract accurate pseudo-labeled knowledge. We employ a dual-branch structure (DBS) to generate reliable pseudo labels for auxiliary supervision, enhancing joint supervision to derive high-quality pseudo labels from low-confidence predictions. This approach reduces the risk of losing object instances due to low-confidence scores, particularly for extreme scales. Additionally, we introduce a pseudo-label training strategy based on sample difficulty, evaluating complexity through object uncertainty and angular information from remote sensing images. Our experimental results show that SRODET achieves state-of-the-art performance in semi-supervised remote sensing object detection across various settings in the DOTA-v1.5 and HRSC2016 benchmarks.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10900437/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To mitigate the impact of noisy labels, many methods prioritize simple samples with reliable labels, often overlooking the valuable information in more challenging samples. This study introduces SRODET, a novel semi-supervised remote sensing object detection model that leverages sample complexity to extract accurate pseudo-labeled knowledge. We employ a dual-branch structure (DBS) to generate reliable pseudo labels for auxiliary supervision, enhancing joint supervision to derive high-quality pseudo labels from low-confidence predictions. This approach reduces the risk of losing object instances due to low-confidence scores, particularly for extreme scales. Additionally, we introduce a pseudo-label training strategy based on sample difficulty, evaluating complexity through object uncertainty and angular information from remote sensing images. Our experimental results show that SRODET achieves state-of-the-art performance in semi-supervised remote sensing object detection across various settings in the DOTA-v1.5 and HRSC2016 benchmarks.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信