Proactive Frequency Stability Scheme Based on Bayesian Filters and Spectral Clustering

IF 3.3 Q3 ENERGY & FUELS
Gian Paramo;Mario D. Baquedano-Aguilar;Arturo Bretas;Sean Meyn
{"title":"Proactive Frequency Stability Scheme Based on Bayesian Filters and Spectral Clustering","authors":"Gian Paramo;Mario D. Baquedano-Aguilar;Arturo Bretas;Sean Meyn","doi":"10.1109/OAJPE.2025.3531240","DOIUrl":null,"url":null,"abstract":"This work presents a proactive distributed model for power system frequency stability. High-level penetration of renewable energy sources into the grid have introduced unforeseen and unmodeled system dynamics. Underfrequency load shedding state-of-the-art solutions are reactive in design, with efficiency constrained by the modeling error. Being able to detect unstable conditions early makes it possible to generate optimized corrective actions. In this work, phasor measurement units are used to predict frequency values. When a disturbance is detected, the state of frequency is predicted a few seconds into the future via a particle filter algorithm. Corrective actions are modeled through a mixed integer linear programming algorithm within system areas established through spectral clustering. The solution is implemented on Matlab, considering IEEE test systems. The proactive design of the method combined with its multiple layers of optimization deliver results that outperform state-of-the-art solutions. Easy-to-implement model, without hard-to-derive parameters, highlights potential aspects towards real-life implementation.","PeriodicalId":56187,"journal":{"name":"IEEE Open Access Journal of Power and Energy","volume":"12 ","pages":"100-110"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10844303","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Access Journal of Power and Energy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10844303/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a proactive distributed model for power system frequency stability. High-level penetration of renewable energy sources into the grid have introduced unforeseen and unmodeled system dynamics. Underfrequency load shedding state-of-the-art solutions are reactive in design, with efficiency constrained by the modeling error. Being able to detect unstable conditions early makes it possible to generate optimized corrective actions. In this work, phasor measurement units are used to predict frequency values. When a disturbance is detected, the state of frequency is predicted a few seconds into the future via a particle filter algorithm. Corrective actions are modeled through a mixed integer linear programming algorithm within system areas established through spectral clustering. The solution is implemented on Matlab, considering IEEE test systems. The proactive design of the method combined with its multiple layers of optimization deliver results that outperform state-of-the-art solutions. Easy-to-implement model, without hard-to-derive parameters, highlights potential aspects towards real-life implementation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.80
自引率
5.30%
发文量
45
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信