{"title":"Joint optimization of replicative rate and information storage set the letter size of primordial genetic alphabet","authors":"Hemachander Subramanian","doi":"10.1016/j.biosystems.2025.105442","DOIUrl":null,"url":null,"abstract":"<div><div>The simplest possible informational heteropolymer requires only a two-letter alphabet to be able to store information. The evolutionary choice of four monomers in the informational biomolecules RNA/DNA or their progenitors is intriguing, given the inherent difficulties in the simultaneous and localized prebiotic synthesis of all four monomers of progenitors of RNA/DNA from common precursors on early Earth. Excluding the scenario where a two-letter alphabet genome eventually expanded to include two more letters to code for more amino acids on teleological grounds, we show here that a replicatively superior heteropolymer sequence in an RNA-world-like scenario would have to be composed of at least four letters in order to predictably fold into a specific secondary structure, and hence must have out-competed the two-letter alphabet genomes. As a consequence of our earlier demonstration of the replicative rate advantage of maximal-nucleotide-skew sequences, in this follow-up article, we show that the competing constraints of maximum replicative rate and predictable secondary structure formation can be simultaneously satisfied only by maximally-skewed palindromic heteropolymer sequences composed of a minimum of four letters.</div></div>","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"251 ","pages":"Article 105442"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0303264725000528","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The simplest possible informational heteropolymer requires only a two-letter alphabet to be able to store information. The evolutionary choice of four monomers in the informational biomolecules RNA/DNA or their progenitors is intriguing, given the inherent difficulties in the simultaneous and localized prebiotic synthesis of all four monomers of progenitors of RNA/DNA from common precursors on early Earth. Excluding the scenario where a two-letter alphabet genome eventually expanded to include two more letters to code for more amino acids on teleological grounds, we show here that a replicatively superior heteropolymer sequence in an RNA-world-like scenario would have to be composed of at least four letters in order to predictably fold into a specific secondary structure, and hence must have out-competed the two-letter alphabet genomes. As a consequence of our earlier demonstration of the replicative rate advantage of maximal-nucleotide-skew sequences, in this follow-up article, we show that the competing constraints of maximum replicative rate and predictable secondary structure formation can be simultaneously satisfied only by maximally-skewed palindromic heteropolymer sequences composed of a minimum of four letters.
期刊介绍:
BioSystems encourages experimental, computational, and theoretical articles that link biology, evolutionary thinking, and the information processing sciences. The link areas form a circle that encompasses the fundamental nature of biological information processing, computational modeling of complex biological systems, evolutionary models of computation, the application of biological principles to the design of novel computing systems, and the use of biomolecular materials to synthesize artificial systems that capture essential principles of natural biological information processing.