A statistical assessment of the laser energy absorption and keyhole stability in high-power laser welding

IF 6.1 1区 工程技术 Q1 ENGINEERING, MANUFACTURING
Xiangmeng Meng , Stephen Nugraha Putra , Marcel Bachmann , Michael Rethmeier
{"title":"A statistical assessment of the laser energy absorption and keyhole stability in high-power laser welding","authors":"Xiangmeng Meng ,&nbsp;Stephen Nugraha Putra ,&nbsp;Marcel Bachmann ,&nbsp;Michael Rethmeier","doi":"10.1016/j.jmapro.2025.03.053","DOIUrl":null,"url":null,"abstract":"<div><div>The behavior of the molten pool and final weld qualities in high-power laser welding are significantly influenced by laser absorption and keyhole stability. However, the dynamic features involved make the in-depth analyses challenging. This study addresses the challenges by conducting a thorough statistical evaluation of the effects of key welding parameters on laser absorption and keyhole fluctuations, using experimental investigations and a robustly validated multi-physics model. From a statistical aspect, the laser energy distribution and the keyhole collapse, commonly considered to be highly time-varying, show certain regularities, for example, three distinct regions of the temporally averaged energy distribution and a universal normal distribution of the keyhole collapse positions. Further discussion is performed to clarify the greater potential of the statistical data in revealing some well-known, industry-related but unclearly explained findings, such as the saturation of the weld penetration with increasing heat input and the physical basis of the contributions of different welding parameters in the porosity reduction.</div></div>","PeriodicalId":16148,"journal":{"name":"Journal of Manufacturing Processes","volume":"141 ","pages":"Pages 885-896"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Processes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1526612525003056","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

The behavior of the molten pool and final weld qualities in high-power laser welding are significantly influenced by laser absorption and keyhole stability. However, the dynamic features involved make the in-depth analyses challenging. This study addresses the challenges by conducting a thorough statistical evaluation of the effects of key welding parameters on laser absorption and keyhole fluctuations, using experimental investigations and a robustly validated multi-physics model. From a statistical aspect, the laser energy distribution and the keyhole collapse, commonly considered to be highly time-varying, show certain regularities, for example, three distinct regions of the temporally averaged energy distribution and a universal normal distribution of the keyhole collapse positions. Further discussion is performed to clarify the greater potential of the statistical data in revealing some well-known, industry-related but unclearly explained findings, such as the saturation of the weld penetration with increasing heat input and the physical basis of the contributions of different welding parameters in the porosity reduction.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Manufacturing Processes
Journal of Manufacturing Processes ENGINEERING, MANUFACTURING-
CiteScore
10.20
自引率
11.30%
发文量
833
审稿时长
50 days
期刊介绍: The aim of the Journal of Manufacturing Processes (JMP) is to exchange current and future directions of manufacturing processes research, development and implementation, and to publish archival scholarly literature with a view to advancing state-of-the-art manufacturing processes and encouraging innovation for developing new and efficient processes. The journal will also publish from other research communities for rapid communication of innovative new concepts. Special-topic issues on emerging technologies and invited papers will also be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信