Data envelopment analysis with imprecise data: Fuzzy and interval modeling approaches

Q3 Mathematics
Hassan Mishmast Nehi , Faranak Hosseinzadeh Saljooghi , Amir Rahimi , Laxmi Rathour , Lakshmi Narayan Mishra , Vishnu Narayan Mishra
{"title":"Data envelopment analysis with imprecise data: Fuzzy and interval modeling approaches","authors":"Hassan Mishmast Nehi ,&nbsp;Faranak Hosseinzadeh Saljooghi ,&nbsp;Amir Rahimi ,&nbsp;Laxmi Rathour ,&nbsp;Lakshmi Narayan Mishra ,&nbsp;Vishnu Narayan Mishra","doi":"10.1016/j.rico.2025.100531","DOIUrl":null,"url":null,"abstract":"<div><div>Data Envelopment Analysis with inaccurate data poses a significant challenge in data science and analytics due to the inherent uncertainties and discrepancies present in real-world data. This article investigates the performance of units evaluated with inaccurate data and presents modeling approaches, including fuzzy and interval methodologies. In other words, by examining the effectiveness of units evaluated with interval data with fuzzy or interval-based bounds, novel approaches for modeling data coverage issues are introduced. Various mathematical techniques and analytical processes are utilized to solve problems and prove theorems. The primary focus is on modeling data coverage issues with fuzzy or interval bounds, which facilitates the creation of more accurate and effective representations of uncertain data. The findings of this article indicate that these modeling approaches lead to improvements in data-driven decision-making. Practical applications of these methods include information management and decision-making for DMU sets in fuzzy and interval environments, enabling analysts to make better decisions. This research contributes to advancing the field of data analytics by providing systematic methods for managing and analyzing inaccurate data, thereby enhancing the reliability and applicability of insights based on data foundations.</div></div>","PeriodicalId":34733,"journal":{"name":"Results in Control and Optimization","volume":"19 ","pages":"Article 100531"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666720725000177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Data Envelopment Analysis with inaccurate data poses a significant challenge in data science and analytics due to the inherent uncertainties and discrepancies present in real-world data. This article investigates the performance of units evaluated with inaccurate data and presents modeling approaches, including fuzzy and interval methodologies. In other words, by examining the effectiveness of units evaluated with interval data with fuzzy or interval-based bounds, novel approaches for modeling data coverage issues are introduced. Various mathematical techniques and analytical processes are utilized to solve problems and prove theorems. The primary focus is on modeling data coverage issues with fuzzy or interval bounds, which facilitates the creation of more accurate and effective representations of uncertain data. The findings of this article indicate that these modeling approaches lead to improvements in data-driven decision-making. Practical applications of these methods include information management and decision-making for DMU sets in fuzzy and interval environments, enabling analysts to make better decisions. This research contributes to advancing the field of data analytics by providing systematic methods for managing and analyzing inaccurate data, thereby enhancing the reliability and applicability of insights based on data foundations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Control and Optimization
Results in Control and Optimization Mathematics-Control and Optimization
CiteScore
3.00
自引率
0.00%
发文量
51
审稿时长
91 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信