Oxytocin receptors within the caudal lateral septum regulate social approach-avoidance, long-term social discrimination, and anxiety-like behaviors in adult male and female rats
{"title":"Oxytocin receptors within the caudal lateral septum regulate social approach-avoidance, long-term social discrimination, and anxiety-like behaviors in adult male and female rats","authors":"Fardad Pirri , Cheryl M. McCormick","doi":"10.1016/j.neuropharm.2025.110409","DOIUrl":null,"url":null,"abstract":"<div><div>OTR signaling promotes social approach or facilitates social avoidance, depending on the brain region involved. The lateral septum plays a critical role in regulating social interactions and memory. We investigated the role of OTR signaling in the caudodorsal lateral septum (LSc.d) in modulating social approach-avoidance behavior, long-term social discrimination memory, and anxiety-like behaviors in adult rats. Local infusion of the selective OTR antagonist L-368,899 (1 μg/0.5 μl) into the LSc.d decreased social approach, increased social vigilance, and reduced long-term social discrimination memory in both sexes. Administration of the biased OTR/Gq agonist carbetocin (0.5 μg/0.5 μl) reduced social approach and long-term social discrimination memory in both sexes, and had anxiogenic effects (increased latency to consume palatable food in test arena) only in males. In contrast, the full OTR agonist TGOT (50 ng/0.5 μl) had no effect on social approach or long-term social discrimination memory, and decreased latency to consume palatable food (anxiolytic effect). The results indicate that the oxytocin system can both promote and inhibit social behaviors depending on the differential activation of G-protein subunits and β-arrestins, as well as the pivotal role of the LS in modulating social and anxiety-like behavior in rats.</div></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":"271 ","pages":"Article 110409"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0028390825001157","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
OTR signaling promotes social approach or facilitates social avoidance, depending on the brain region involved. The lateral septum plays a critical role in regulating social interactions and memory. We investigated the role of OTR signaling in the caudodorsal lateral septum (LSc.d) in modulating social approach-avoidance behavior, long-term social discrimination memory, and anxiety-like behaviors in adult rats. Local infusion of the selective OTR antagonist L-368,899 (1 μg/0.5 μl) into the LSc.d decreased social approach, increased social vigilance, and reduced long-term social discrimination memory in both sexes. Administration of the biased OTR/Gq agonist carbetocin (0.5 μg/0.5 μl) reduced social approach and long-term social discrimination memory in both sexes, and had anxiogenic effects (increased latency to consume palatable food in test arena) only in males. In contrast, the full OTR agonist TGOT (50 ng/0.5 μl) had no effect on social approach or long-term social discrimination memory, and decreased latency to consume palatable food (anxiolytic effect). The results indicate that the oxytocin system can both promote and inhibit social behaviors depending on the differential activation of G-protein subunits and β-arrestins, as well as the pivotal role of the LS in modulating social and anxiety-like behavior in rats.
期刊介绍:
Neuropharmacology publishes high quality, original research and review articles within the discipline of neuroscience, especially articles with a neuropharmacological component. However, papers within any area of neuroscience will be considered. The journal does not usually accept clinical research, although preclinical neuropharmacological studies in humans may be considered. The journal only considers submissions in which the chemical structures and compositions of experimental agents are readily available in the literature or disclosed by the authors in the submitted manuscript. Only in exceptional circumstances will natural products be considered, and then only if the preparation is well defined by scientific means. Neuropharmacology publishes articles of any length (original research and reviews).