Evaluating the global sea snake diversity and distribution under climate change scenario

IF 3 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Debosmita Sikdar, Ahmed Shahir, Sumit Mandal
{"title":"Evaluating the global sea snake diversity and distribution under climate change scenario","authors":"Debosmita Sikdar,&nbsp;Ahmed Shahir,&nbsp;Sumit Mandal","doi":"10.1016/j.marenvres.2025.107055","DOIUrl":null,"url":null,"abstract":"<div><div>Anthropogenically accelerated climate change has wreaked havoc on marine ecosystems, particularly affecting marine reptiles such as sea snakes. These reptiles are highly sensitive to climate change induced coral reef degradation and environmental fluctuations, leading to habitat expansion and increased human-sea snake interactions. Despite this, till date no comprehensive investigation of global sea snake diversity and distribution has been conducted. In this study, we used MaxEnt Species Distribution Modelling (SDM) to assess effects of climate change on sea snake distribution from 1993 to 2024. This analysis integrates occurrence data sourced from exhaustive literature reviews and biogeographic databases with environmental predictors like seawater temperature, salinity, and chlorophyll <em>a</em> concentration. The study identifies 74 species across 11 genera and 3 families. Among 14 biogeographic habitats examined, the South Pacific and Indian Oceans exhibit highest species richness, while the Atlantic Ocean shows the lowest. Notably, species in the Bay of Bengal and Arafura Sea demonstrate significant taxonomic distinctness. Furthermore, our findings reveal a substantial expansion of sea snake habitats from equatorial to temperate regions, primarily driven by increase in seawater temperature. Optimal habitat suitability is associated with temperatures of approximately 30 °C, chlorophyll <em>a</em> concentration of around 0.3 mg m<sup>−3</sup>, and salinity levels between 35 and 40 g L<sup>−1</sup>. These insights into sea snake diversity and distributional shifts induced by global climate change are critical for formulating evidence-based management strategies, including implementation of sustainable fishing practices, preservation of critical habitats, and establishment of rigorous bycatch mitigation protocols to ensure conservation of these ecologically significant marine reptiles.</div></div>","PeriodicalId":18204,"journal":{"name":"Marine environmental research","volume":"207 ","pages":"Article 107055"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine environmental research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141113625001126","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Anthropogenically accelerated climate change has wreaked havoc on marine ecosystems, particularly affecting marine reptiles such as sea snakes. These reptiles are highly sensitive to climate change induced coral reef degradation and environmental fluctuations, leading to habitat expansion and increased human-sea snake interactions. Despite this, till date no comprehensive investigation of global sea snake diversity and distribution has been conducted. In this study, we used MaxEnt Species Distribution Modelling (SDM) to assess effects of climate change on sea snake distribution from 1993 to 2024. This analysis integrates occurrence data sourced from exhaustive literature reviews and biogeographic databases with environmental predictors like seawater temperature, salinity, and chlorophyll a concentration. The study identifies 74 species across 11 genera and 3 families. Among 14 biogeographic habitats examined, the South Pacific and Indian Oceans exhibit highest species richness, while the Atlantic Ocean shows the lowest. Notably, species in the Bay of Bengal and Arafura Sea demonstrate significant taxonomic distinctness. Furthermore, our findings reveal a substantial expansion of sea snake habitats from equatorial to temperate regions, primarily driven by increase in seawater temperature. Optimal habitat suitability is associated with temperatures of approximately 30 °C, chlorophyll a concentration of around 0.3 mg m−3, and salinity levels between 35 and 40 g L−1. These insights into sea snake diversity and distributional shifts induced by global climate change are critical for formulating evidence-based management strategies, including implementation of sustainable fishing practices, preservation of critical habitats, and establishment of rigorous bycatch mitigation protocols to ensure conservation of these ecologically significant marine reptiles.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Marine environmental research
Marine environmental research 环境科学-毒理学
CiteScore
5.90
自引率
3.00%
发文量
217
审稿时长
46 days
期刊介绍: Marine Environmental Research publishes original research papers on chemical, physical, and biological interactions in the oceans and coastal waters. The journal serves as a forum for new information on biology, chemistry, and toxicology and syntheses that advance understanding of marine environmental processes. Submission of multidisciplinary studies is encouraged. Studies that utilize experimental approaches to clarify the roles of anthropogenic and natural causes of changes in marine ecosystems are especially welcome, as are those studies that represent new developments of a theoretical or conceptual aspect of marine science. All papers published in this journal are reviewed by qualified peers prior to acceptance and publication. Examples of topics considered to be appropriate for the journal include, but are not limited to, the following: – The extent, persistence, and consequences of change and the recovery from such change in natural marine systems – The biochemical, physiological, and ecological consequences of contaminants to marine organisms and ecosystems – The biogeochemistry of naturally occurring and anthropogenic substances – Models that describe and predict the above processes – Monitoring studies, to the extent that their results provide new information on functional processes – Methodological papers describing improved quantitative techniques for the marine sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信