Zeeshan Saleem Mufti , Kashaf Mahboob , Muhammad Nauman Aslam , Sadaf Hussain , Abdoalrahman S.A. Omer , Tanweer Sohail , Sagheer Abbas , Ilyas Khan , Muhammad Adnan Khan
{"title":"Spectral analysis of Cupric oxide (CuO) and Graphene Oxide (GO) via machine learning techniques","authors":"Zeeshan Saleem Mufti , Kashaf Mahboob , Muhammad Nauman Aslam , Sadaf Hussain , Abdoalrahman S.A. Omer , Tanweer Sohail , Sagheer Abbas , Ilyas Khan , Muhammad Adnan Khan","doi":"10.1016/j.eij.2025.100632","DOIUrl":null,"url":null,"abstract":"<div><div>Chemical graph theory has recently gained much attraction among researchers due to its extensive use in mathematical chemistry. In this research article, We have studied the spectral properties such as eigenvalues, energy and Estrada index of some chemical structures such as Cupric oxide (<span><math><mrow><mi>C</mi><mi>u</mi><mi>O</mi></mrow></math></span>) and Graphene Oxide (GO). We have computed the energy <span><math><mrow><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mrow><mo>|</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo></mrow></mrow></math></span> and the other invariant Estrada index <span><math><mrow><mi>E</mi><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><msup><mrow><mi>e</mi></mrow><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msup></mrow></math></span> of the above mentioned graph structures and obtain the polynomial regression analysis using machine learning techniques. This approach permitted us to predict the spectral values more precisely and analyze the difference between the actual and predicted values. The actual values of energy and Estrada index is represented by <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>a</mi><mi>v</mi></mrow></msub></math></span> and <span><math><mrow><mi>E</mi><msub><mrow><mi>E</mi></mrow><mrow><mi>a</mi><mi>v</mi></mrow></msub></mrow></math></span> while the predicted values of energy and Estrada index is represented by <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>p</mi><mi>v</mi></mrow></msub></math></span> and <span><math><mrow><mi>E</mi><msub><mrow><mi>E</mi></mrow><mrow><mi>p</mi><mi>v</mi></mrow></msub></mrow></math></span>, where <span><math><mrow><mi>a</mi><mi>v</mi></mrow></math></span> represents ”actual value” and <span><math><mrow><mi>p</mi><mi>v</mi></mrow></math></span> represents ”predicted value”. We first use traditional method based on softwares and get the actual values (<span><math><mrow><mi>a</mi><mi>v</mi></mrow></math></span>) (see section 2). Then we perform machine learning techniques to generate a best fit model and get the predicted values (<span><math><mrow><mi>p</mi><mi>v</mi></mrow></math></span>) of the energies and Estrada index of Cupric oxide <span><math><mrow><mi>C</mi><mi>u</mi><mi>O</mi></mrow></math></span> and Graphene Oxide <span><math><mrow><mi>G</mi><mi>O</mi></mrow></math></span> by using the best fit second order polynomial for Energy and Estrada Index of <span><math><mrow><mi>C</mi><mi>u</mi><mi>O</mi></mrow></math></span> is obtained as <span><math><mrow><mi>E</mi><mrow><mo>(</mo><mi>CuO</mi><mo>)</mo></mrow><mo>=</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>007</mn><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>5</mn><mo>.</mo><mn>892</mn><mspace></mspace><mi>m</mi><mi>n</mi><mo>+</mo><mn>2</mn><mo>.</mo><mn>243</mn><mspace></mspace><mi>m</mi><mo>+</mo><mn>2</mn><mo>.</mo><mn>169</mn><mi>n</mi><mo>−</mo><mn>0</mn><mo>.</mo><mn>365</mn></mrow></math></span> and <span><math><mrow><mi>E</mi><mi>E</mi><mrow><mo>(</mo><mi>CuO</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>537</mn><mo>+</mo><mn>2</mn><mo>.</mo><mn>084</mn><mi>m</mi><mo>+</mo><mn>2</mn><mo>.</mo><mn>084</mn><mi>n</mi><mo>+</mo><mn>13</mn><mo>.</mo><mn>533</mn><mspace></mspace><mi>m</mi><mi>n</mi></mrow></math></span>, respectively. Similarly, the best fit second order polynomial for Energy and Estrada Index of <span><math><mrow><mi>G</mi><mi>O</mi></mrow></math></span> is obtained as <span><math><mrow><mi>E</mi><mrow><mo>(</mo><mi>GO</mi><mo>)</mo></mrow><mo>=</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>266</mn><mo>+</mo><mn>2</mn><mo>.</mo><mn>533</mn><mspace></mspace><mi>m</mi><mo>+</mo><mn>2</mn><mo>.</mo><mn>598</mn><mi>n</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>014</mn><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>3</mn><mo>.</mo><mn>133</mn><mi>m</mi><mi>n</mi><mo>+</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>017</mn><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> and <span><math><mrow><mi>E</mi><mi>E</mi><mrow><mo>(</mo><mi>GO</mi><mo>)</mo></mrow><mo>=</mo><mo>−</mo><mn>1</mn><mo>.</mo><mn>671</mn><mo>+</mo><mn>4</mn><mo>.</mo><mn>400</mn><mi>m</mi><mo>+</mo><mn>4</mn><mo>.</mo><mn>440</mn><mi>n</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>016</mn><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>6</mn><mo>.</mo><mn>553</mn><mi>m</mi><mi>n</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>014</mn><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, respectively. We have observed the difference between <span><math><mrow><mi>a</mi><mi>v</mi></mrow></math></span> and <span><math><mrow><mi>p</mi><mi>v</mi></mrow></math></span> which shows our machine learning model is best fit model as the error between the <span><math><mrow><mi>a</mi><mi>v</mi></mrow></math></span> and <span><math><mrow><mi>p</mi><mi>v</mi></mrow></math></span> is minimum.</div></div>","PeriodicalId":56010,"journal":{"name":"Egyptian Informatics Journal","volume":"29 ","pages":"Article 100632"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Informatics Journal","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110866525000258","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Chemical graph theory has recently gained much attraction among researchers due to its extensive use in mathematical chemistry. In this research article, We have studied the spectral properties such as eigenvalues, energy and Estrada index of some chemical structures such as Cupric oxide () and Graphene Oxide (GO). We have computed the energy and the other invariant Estrada index of the above mentioned graph structures and obtain the polynomial regression analysis using machine learning techniques. This approach permitted us to predict the spectral values more precisely and analyze the difference between the actual and predicted values. The actual values of energy and Estrada index is represented by and while the predicted values of energy and Estrada index is represented by and , where represents ”actual value” and represents ”predicted value”. We first use traditional method based on softwares and get the actual values () (see section 2). Then we perform machine learning techniques to generate a best fit model and get the predicted values () of the energies and Estrada index of Cupric oxide and Graphene Oxide by using the best fit second order polynomial for Energy and Estrada Index of is obtained as and , respectively. Similarly, the best fit second order polynomial for Energy and Estrada Index of is obtained as and , respectively. We have observed the difference between and which shows our machine learning model is best fit model as the error between the and is minimum.
期刊介绍:
The Egyptian Informatics Journal is published by the Faculty of Computers and Artificial Intelligence, Cairo University. This Journal provides a forum for the state-of-the-art research and development in the fields of computing, including computer sciences, information technologies, information systems, operations research and decision support. Innovative and not-previously-published work in subjects covered by the Journal is encouraged to be submitted, whether from academic, research or commercial sources.