Dynamics and optimal control of fractional-order monkeypox epidemic model with social distancing habits and public awareness

Raqqasyi Rahmatullah Musafir, Agus Suryanto, Isnani Darti, Trisilowati
{"title":"Dynamics and optimal control of fractional-order monkeypox epidemic model with social distancing habits and public awareness","authors":"Raqqasyi Rahmatullah Musafir,&nbsp;Agus Suryanto,&nbsp;Isnani Darti,&nbsp;Trisilowati","doi":"10.1016/j.cmpbup.2025.100187","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we propose a fractional-order monkeypox epidemic model incorporating social distancing habits and public awareness. The model includes the addition of a protected compartment and a saturated transmission rate. We implement a power rescaling for the parameters of the proposed model to ensure dimensional consistency. We have investigated the existence, uniqueness, nonnegativity, and boundedness of the solution. The model features monkeypox-free, human-endemic, and endemic equilibrium points, which depend on the order of derivative. The existence and stability of each equilibrium point have been analyzed locally and globally, depending on the basic reproduction number. Moreover, the basic reproduction number of the model also depends on the order of derivative. We carried out a case study using real data showing that the fractional-order model performs better than the first-order model in calibration and forecasting. Numerical simulations confirm the stability properties of each equilibrium point with respect to the specified parameter values. Numerical simulations also demonstrate that the social distancing habits can reduce monkeypox cases in the early stages, but do not significantly alter the basic reproduction number. Meanwhile, public awareness can substantially modify the basic reproduction number, shifting the endemic condition towards a disease-free state, although its impact on case reduction in the early period is not significant. We also implemented optimal control strategies for vector culling and vaccination in the proposed model. We have solved the optimal control problem, and the simulation results show that the combination of both controls yields the minimum cost with better effectiveness compared to the controls implemented separately.</div></div>","PeriodicalId":72670,"journal":{"name":"Computer methods and programs in biomedicine update","volume":"7 ","pages":"Article 100187"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine update","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666990025000114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we propose a fractional-order monkeypox epidemic model incorporating social distancing habits and public awareness. The model includes the addition of a protected compartment and a saturated transmission rate. We implement a power rescaling for the parameters of the proposed model to ensure dimensional consistency. We have investigated the existence, uniqueness, nonnegativity, and boundedness of the solution. The model features monkeypox-free, human-endemic, and endemic equilibrium points, which depend on the order of derivative. The existence and stability of each equilibrium point have been analyzed locally and globally, depending on the basic reproduction number. Moreover, the basic reproduction number of the model also depends on the order of derivative. We carried out a case study using real data showing that the fractional-order model performs better than the first-order model in calibration and forecasting. Numerical simulations confirm the stability properties of each equilibrium point with respect to the specified parameter values. Numerical simulations also demonstrate that the social distancing habits can reduce monkeypox cases in the early stages, but do not significantly alter the basic reproduction number. Meanwhile, public awareness can substantially modify the basic reproduction number, shifting the endemic condition towards a disease-free state, although its impact on case reduction in the early period is not significant. We also implemented optimal control strategies for vector culling and vaccination in the proposed model. We have solved the optimal control problem, and the simulation results show that the combination of both controls yields the minimum cost with better effectiveness compared to the controls implemented separately.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信