Electromagnetic shielding forming: A facile approach for Lorentz force regulation and its application in tube forming

IF 6.7 2区 材料科学 Q1 ENGINEERING, INDUSTRIAL
Xinhui Zhu , Xiaofei Xu , Wang Zhang , Limeng Du , Zihao Shao , Zhipeng Lai , Xiaotao Han , Liang Li , Quanliang Cao , Shaowei Ouyang
{"title":"Electromagnetic shielding forming: A facile approach for Lorentz force regulation and its application in tube forming","authors":"Xinhui Zhu ,&nbsp;Xiaofei Xu ,&nbsp;Wang Zhang ,&nbsp;Limeng Du ,&nbsp;Zihao Shao ,&nbsp;Zhipeng Lai ,&nbsp;Xiaotao Han ,&nbsp;Liang Li ,&nbsp;Quanliang Cao ,&nbsp;Shaowei Ouyang","doi":"10.1016/j.jmatprotec.2025.118795","DOIUrl":null,"url":null,"abstract":"<div><div>The Lorentz force distribution is crucial in determining the deformation of workpieces in electromagnetic forming, with its spatial distribution directly influencing the resulting shape. However, achieving flexible control over this force to accommodate diverse forming requirements poses a significant challenge. To address this, an innovative electromagnetic shielding forming (EMSF) technique is proposed, which introduces a conductive metal ring positioned around the coil-tube assembly to modulate the Lorentz force distribution through its eddy current shielding effect during pulsed discharge. On this basis, we systematically explore how variations in the ring’s thickness, length, electrical conductivity, and positioning affect the shielding performance. Applying this forming method to long tubes, short tubes, and variable-diameter tubes, it is demonstrated that conventional EMF processes typically result in long tubes deforming into convex shapes and short tubes into concave shapes. In contrast, the method improves the uniformity of long-tube forming and offers the flexibility to shape short tubes into concave, flat, or convex profiles. Additionally, the method enhances the precision of variable-diameter tube forming by optimizing ring placement, enabling the production of high-accuracy tubes of various sizes. This advancement introduces a versatile and effective strategy for managing the Lorentz force via electromagnetic shielding effect, which enables more precise and flexible control over the deformation of workpieces during the electromagnetic forming process.</div></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"338 ","pages":"Article 118795"},"PeriodicalIF":6.7000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Processing Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924013625000858","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

The Lorentz force distribution is crucial in determining the deformation of workpieces in electromagnetic forming, with its spatial distribution directly influencing the resulting shape. However, achieving flexible control over this force to accommodate diverse forming requirements poses a significant challenge. To address this, an innovative electromagnetic shielding forming (EMSF) technique is proposed, which introduces a conductive metal ring positioned around the coil-tube assembly to modulate the Lorentz force distribution through its eddy current shielding effect during pulsed discharge. On this basis, we systematically explore how variations in the ring’s thickness, length, electrical conductivity, and positioning affect the shielding performance. Applying this forming method to long tubes, short tubes, and variable-diameter tubes, it is demonstrated that conventional EMF processes typically result in long tubes deforming into convex shapes and short tubes into concave shapes. In contrast, the method improves the uniformity of long-tube forming and offers the flexibility to shape short tubes into concave, flat, or convex profiles. Additionally, the method enhances the precision of variable-diameter tube forming by optimizing ring placement, enabling the production of high-accuracy tubes of various sizes. This advancement introduces a versatile and effective strategy for managing the Lorentz force via electromagnetic shielding effect, which enables more precise and flexible control over the deformation of workpieces during the electromagnetic forming process.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Processing Technology
Journal of Materials Processing Technology 工程技术-材料科学:综合
CiteScore
12.60
自引率
4.80%
发文量
403
审稿时长
29 days
期刊介绍: The Journal of Materials Processing Technology covers the processing techniques used in manufacturing components from metals and other materials. The journal aims to publish full research papers of original, significant and rigorous work and so to contribute to increased production efficiency and improved component performance. Areas of interest to the journal include: • Casting, forming and machining • Additive processing and joining technologies • The evolution of material properties under the specific conditions met in manufacturing processes • Surface engineering when it relates specifically to a manufacturing process • Design and behavior of equipment and tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信