Modeling of a Mainstream Partial Nitrification/Anammox Process through a Hybrid Theoretical-Machine Learning Approach

IF 4.8 Q1 ENVIRONMENTAL SCIENCES
Valeria Alvarado, Lebing Ying, Vahid Asghari, Shu-Chien Hsu* and Po-Heng Lee, 
{"title":"Modeling of a Mainstream Partial Nitrification/Anammox Process through a Hybrid Theoretical-Machine Learning Approach","authors":"Valeria Alvarado,&nbsp;Lebing Ying,&nbsp;Vahid Asghari,&nbsp;Shu-Chien Hsu* and Po-Heng Lee,&nbsp;","doi":"10.1021/acsestwater.4c0122010.1021/acsestwater.4c01220","DOIUrl":null,"url":null,"abstract":"<p >Model simulations are vital in optimizing and predicting the performance of biological wastewater treatment, especially for processes involving slow-growing bacteria. However, data records often include missing, invalid, or infrequent measurements of parameters, compromising prediction accuracy. This study used a hybrid theoretical-machine learning approach to address these issues. By leveraging the stoichiometry and kinetics, missing values were calculated in limited data sets, which were then analyzed through machine learning algorithms to reveal hidden microbial interactions. The model was validated with data from a pilot-scale partial nitritation/anammox fluidized bed membrane bioreactor (PN/A FMBR) with saline sewage. The model demonstrated strong prediction performance, with random forest outperforming other algorithms with correlation coefficients of 0.89, 0.72, and 0.80 for ammonium, nitrite, and nitrate data sets, respectively, when compared to actual values. Training sets containing 73 to 88 same-day values reached acceptable predicting performance. The results also revealed that microbial synergy in nitrogen transformation, particularly in the partial denitrification from nitrate to nitrite linked to Anammox in responding to a low DO supply, was evident in this PN/A FMBR. Additionally, key parameters, including temperature, pH, and specific microbiomes, were identified as critical for predicting PN/AFMBR performance, highlighting significant microbial interactions that warrant further investigation.</p>","PeriodicalId":93847,"journal":{"name":"ACS ES&T water","volume":"5 3","pages":"1469–1480 1469–1480"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T water","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestwater.4c01220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Model simulations are vital in optimizing and predicting the performance of biological wastewater treatment, especially for processes involving slow-growing bacteria. However, data records often include missing, invalid, or infrequent measurements of parameters, compromising prediction accuracy. This study used a hybrid theoretical-machine learning approach to address these issues. By leveraging the stoichiometry and kinetics, missing values were calculated in limited data sets, which were then analyzed through machine learning algorithms to reveal hidden microbial interactions. The model was validated with data from a pilot-scale partial nitritation/anammox fluidized bed membrane bioreactor (PN/A FMBR) with saline sewage. The model demonstrated strong prediction performance, with random forest outperforming other algorithms with correlation coefficients of 0.89, 0.72, and 0.80 for ammonium, nitrite, and nitrate data sets, respectively, when compared to actual values. Training sets containing 73 to 88 same-day values reached acceptable predicting performance. The results also revealed that microbial synergy in nitrogen transformation, particularly in the partial denitrification from nitrate to nitrite linked to Anammox in responding to a low DO supply, was evident in this PN/A FMBR. Additionally, key parameters, including temperature, pH, and specific microbiomes, were identified as critical for predicting PN/AFMBR performance, highlighting significant microbial interactions that warrant further investigation.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信