Dhana Sekhar Reddy Bandi, Ganji Purnachandra Nagaraju, Sujith Sarvesh, Julienne L. Carstens, Jeremy B. Foote, Emily C. Graff, Yu-Hua D Fang, Adam B. Keeton, Xi Chen, Jacob Valiyaveettil, Kristy L. Berry, Sejong Bae, Mehmet Akce, Greg Gorman, Karina J. Yoon, Upender Manne, Michael R. Boyd, Donald J. Buchsbaum, Asfar S. Azmi, Yulia Y. Maxuitenko, Gary A. Piazza, Bassel F. El-Rayes
{"title":"ADT-1004: a first-in-class, oral pan-RAS inhibitor with robust antitumor activity in preclinical models of pancreatic ductal adenocarcinoma","authors":"Dhana Sekhar Reddy Bandi, Ganji Purnachandra Nagaraju, Sujith Sarvesh, Julienne L. Carstens, Jeremy B. Foote, Emily C. Graff, Yu-Hua D Fang, Adam B. Keeton, Xi Chen, Jacob Valiyaveettil, Kristy L. Berry, Sejong Bae, Mehmet Akce, Greg Gorman, Karina J. Yoon, Upender Manne, Michael R. Boyd, Donald J. Buchsbaum, Asfar S. Azmi, Yulia Y. Maxuitenko, Gary A. Piazza, Bassel F. El-Rayes","doi":"10.1186/s12943-025-02288-9","DOIUrl":null,"url":null,"abstract":"Oncogenic KRAS mutations occur in nearly, 90% of patients with pancreatic ductal adenocarcinoma (PDAC). Targeting KRAS has been complicated by mutational heterogeneity and rapid resistance. We developed a novel pan-RAS inhibitor, ADT-1004 (an oral prodrug of ADT-007) and evaluated antitumor activity in murine and human PDAC models. Murine PDAC cells with KRASG12D mutation (KPC-luc or 2838c3-luc) were orthotopically implanted into the pancreas of C57BL/6J mice, and four PDX PDAC tumors with KRAS mutations were implanted subcutaneously in NSG mice. To assess potential to overcome RAS inhibitor resistance, parental and resistant MIA PaCa-2 PDAC cells (KRASG12C mutation) were implanted subcutaneously. Subcutaneously implanted RASWT BxPC-3 cells were used to assess the selectivity of ADT-1004. ADT-1004 potently blocked tumor growth and RAS activation in mouse PDAC models without discernable toxicity with target engagement and reduced activated RAS and ERK phosphorylation. In addition, ADT-1004 suppressed tumor growth in PDX PDAC models with KRASG12D, KRASG12V, KRASG12C, or KRASG13Q mutations and increased CD4+ and CD8+ T cells in the TME consistent with exhaustion and increased MHCII+ M1 macrophage and dendritic cells. ADT-1004 demonstrated superior efficacy over sotorasib and adagrasib in tumor models resistant to these KRASG12C inhibitors and MRTX1133 resistant KRASG12D mutant cells. As evidence of selectivity for tumors with mutant KRAS, ADT-1004 did not impact the growth of tumors from RASWT PDAC cells. ADT-1004 has strong antitumor activity in aggressive and clinically relevant PDAC models with unique selectivity to block RAS-mediated signaling in RAS mutant cells. As a pan-RAS inhibitor, ADT-1004 has broad activity and potential efficacy advantages over allele-specific KRAS inhibitors. These findings support clinical trials of ADT-1004 for KRAS mutant PDAC.","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"68 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12943-025-02288-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Oncogenic KRAS mutations occur in nearly, 90% of patients with pancreatic ductal adenocarcinoma (PDAC). Targeting KRAS has been complicated by mutational heterogeneity and rapid resistance. We developed a novel pan-RAS inhibitor, ADT-1004 (an oral prodrug of ADT-007) and evaluated antitumor activity in murine and human PDAC models. Murine PDAC cells with KRASG12D mutation (KPC-luc or 2838c3-luc) were orthotopically implanted into the pancreas of C57BL/6J mice, and four PDX PDAC tumors with KRAS mutations were implanted subcutaneously in NSG mice. To assess potential to overcome RAS inhibitor resistance, parental and resistant MIA PaCa-2 PDAC cells (KRASG12C mutation) were implanted subcutaneously. Subcutaneously implanted RASWT BxPC-3 cells were used to assess the selectivity of ADT-1004. ADT-1004 potently blocked tumor growth and RAS activation in mouse PDAC models without discernable toxicity with target engagement and reduced activated RAS and ERK phosphorylation. In addition, ADT-1004 suppressed tumor growth in PDX PDAC models with KRASG12D, KRASG12V, KRASG12C, or KRASG13Q mutations and increased CD4+ and CD8+ T cells in the TME consistent with exhaustion and increased MHCII+ M1 macrophage and dendritic cells. ADT-1004 demonstrated superior efficacy over sotorasib and adagrasib in tumor models resistant to these KRASG12C inhibitors and MRTX1133 resistant KRASG12D mutant cells. As evidence of selectivity for tumors with mutant KRAS, ADT-1004 did not impact the growth of tumors from RASWT PDAC cells. ADT-1004 has strong antitumor activity in aggressive and clinically relevant PDAC models with unique selectivity to block RAS-mediated signaling in RAS mutant cells. As a pan-RAS inhibitor, ADT-1004 has broad activity and potential efficacy advantages over allele-specific KRAS inhibitors. These findings support clinical trials of ADT-1004 for KRAS mutant PDAC.
期刊介绍:
Molecular Cancer is a platform that encourages the exchange of ideas and discoveries in the field of cancer research, particularly focusing on the molecular aspects. Our goal is to facilitate discussions and provide insights into various areas of cancer and related biomedical science. We welcome articles from basic, translational, and clinical research that contribute to the advancement of understanding, prevention, diagnosis, and treatment of cancer.
The scope of topics covered in Molecular Cancer is diverse and inclusive. These include, but are not limited to, cell and tumor biology, angiogenesis, utilizing animal models, understanding metastasis, exploring cancer antigens and the immune response, investigating cellular signaling and molecular biology, examining epidemiology, genetic and molecular profiling of cancer, identifying molecular targets, studying cancer stem cells, exploring DNA damage and repair mechanisms, analyzing cell cycle regulation, investigating apoptosis, exploring molecular virology, and evaluating vaccine and antibody-based cancer therapies.
Molecular Cancer serves as an important platform for sharing exciting discoveries in cancer-related research. It offers an unparalleled opportunity to communicate information to both specialists and the general public. The online presence of Molecular Cancer enables immediate publication of accepted articles and facilitates the presentation of large datasets and supplementary information. This ensures that new research is efficiently and rapidly disseminated to the scientific community.