Entanglement Witness for Indistinguishable Electrons Using Solid-State Spectroscopy

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Tongtong Liu, Luogen Xu, Jiarui Liu, Yao Wang
{"title":"Entanglement Witness for Indistinguishable Electrons Using Solid-State Spectroscopy","authors":"Tongtong Liu, Luogen Xu, Jiarui Liu, Yao Wang","doi":"10.1103/physrevx.15.011056","DOIUrl":null,"url":null,"abstract":"Characterizing entanglement in quantum materials is crucial for advancing next-generation quantum technologies. Despite recent strides in witnessing entanglement in magnetic materials with distinguishable spin modes, quantifying entanglement in systems formed by indistinguishable electrons remains a formidable challenge. To solve this problem, we introduce a method to extract various four-fermion correlations by analyzing the nonlinearity in resonant inelastic x-ray scattering spectra. These correlations constitute the primary components of the cumulant two-particle reduced density matrix. We further derive bounds for its eigenvalues and demonstrate the linear scaling with fermionic entanglement depth, providing a reliable witness for entanglement. Using the material-relevant strongly correlated models as examples, we show how this entanglement witness can efficiently quantify multipartite entanglement across different phase regions, highlighting its advantage over quantum Fisher information. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"33 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.011056","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Characterizing entanglement in quantum materials is crucial for advancing next-generation quantum technologies. Despite recent strides in witnessing entanglement in magnetic materials with distinguishable spin modes, quantifying entanglement in systems formed by indistinguishable electrons remains a formidable challenge. To solve this problem, we introduce a method to extract various four-fermion correlations by analyzing the nonlinearity in resonant inelastic x-ray scattering spectra. These correlations constitute the primary components of the cumulant two-particle reduced density matrix. We further derive bounds for its eigenvalues and demonstrate the linear scaling with fermionic entanglement depth, providing a reliable witness for entanglement. Using the material-relevant strongly correlated models as examples, we show how this entanglement witness can efficiently quantify multipartite entanglement across different phase regions, highlighting its advantage over quantum Fisher information. Published by the American Physical Society 2025
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信