Guanghui He, Bingtian Ye, Ruotian Gong, Changyu Yao, Zhongyuan Liu, Kater W. Murch, Norman Y. Yao, Chong Zu
{"title":"Experimental Realization of Discrete Time Quasicrystals","authors":"Guanghui He, Bingtian Ye, Ruotian Gong, Changyu Yao, Zhongyuan Liu, Kater W. Murch, Norman Y. Yao, Chong Zu","doi":"10.1103/physrevx.15.011055","DOIUrl":null,"url":null,"abstract":"Floquet (periodically driven) systems can give rise to unique nonequilibrium phases of matter without equilibrium analogs. The most prominent example is the realization of discrete time crystals. An intriguing question emerges: What other novel phases can manifest when the constraint of time periodicity is relaxed? In this study, we explore quantum systems subjected to a quasiperiodic drive. Leveraging a strongly interacting spin ensemble in diamond, we identify the emergence of long-lived discrete time quasicrystals. Unlike conventional time crystals, time quasicrystals exhibit robust subharmonic responses at multiple incommensurate frequencies. Furthermore, we show that the multifrequency nature of the quasiperiodic drive allows for the formation of diverse patterns associated with different discrete time quasicrystalline phases. Our findings demonstrate the existence of nonequilibrium phases in quasi-Floquet settings, significantly broadening the catalog of novel phenomena in driven many-body quantum systems. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"56 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.011055","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Floquet (periodically driven) systems can give rise to unique nonequilibrium phases of matter without equilibrium analogs. The most prominent example is the realization of discrete time crystals. An intriguing question emerges: What other novel phases can manifest when the constraint of time periodicity is relaxed? In this study, we explore quantum systems subjected to a quasiperiodic drive. Leveraging a strongly interacting spin ensemble in diamond, we identify the emergence of long-lived discrete time quasicrystals. Unlike conventional time crystals, time quasicrystals exhibit robust subharmonic responses at multiple incommensurate frequencies. Furthermore, we show that the multifrequency nature of the quasiperiodic drive allows for the formation of diverse patterns associated with different discrete time quasicrystalline phases. Our findings demonstrate the existence of nonequilibrium phases in quasi-Floquet settings, significantly broadening the catalog of novel phenomena in driven many-body quantum systems. Published by the American Physical Society2025
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.