The initial mass-remnant mass relation for core collapse supernovae

IF 5.8 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Cristiano Ugolini, Marco Limongi, Raffaella Schneider, Alessandro Chieffi, Ugo Niccolò Di Carlo, Mario Spera
{"title":"The initial mass-remnant mass relation for core collapse supernovae","authors":"Cristiano Ugolini, Marco Limongi, Raffaella Schneider, Alessandro Chieffi, Ugo Niccolò Di Carlo, Mario Spera","doi":"10.1051/0004-6361/202451483","DOIUrl":null,"url":null,"abstract":"<i>Context.<i/> The first direct detection of gravitational waves in 2015 marked the beginning of a new era for the study of compact objects. Upcoming detectors, such as the Einstein Telescope, are expected to add thousands of binary coalescences to the list. However, from a theoretical perspective, our understanding of compact objects is hindered by many uncertainties, and a comprehensive study of the nature of stellar remnants from core-collapse supernovae is still lacking.<i>Aims.<i/> In this work, we investigate the properties of stellar remnants using a homogeneous grid of rotating and non-rotating massive stars at various metallicities.<i>Methods.<i/> We simulated the supernova explosion of the evolved progenitors using the HYdrodynamic Ppm Explosion with Radiation diffusION (HYPERION) code, assuming a thermal bomb model calibrated to match the main properties of SN1987A.<i>Results.<i/> We find that the heaviest black hole that can form depends on the initial stellar rotation, metallicity, and the assumed criterion for the onset of pulsational pair-instability supernovae. Non-rotating progenitors at [Fe/H] = −3 can form black holes up to ∼87, M<sub>⊙<sub/>, thus falling within the theorized pair-instability mass gap. Conversely, enhanced wind mass loss prevents the formation of BHs more massive than ∼41.6 M<sub>⊙<sub/> from rotating progenitors. We used our results to study the black hole mass distribution from a population of 10<sup>6<sup/> isolated massive stars following a Kroupa initial mass function. Finally, we provide fitting formulas to compute the mass of compact remnants as a function of stellar progenitor properties. Our up-to-date prescriptions can be easily implemented in rapid population synthesis codes.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"16 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202451483","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Context. The first direct detection of gravitational waves in 2015 marked the beginning of a new era for the study of compact objects. Upcoming detectors, such as the Einstein Telescope, are expected to add thousands of binary coalescences to the list. However, from a theoretical perspective, our understanding of compact objects is hindered by many uncertainties, and a comprehensive study of the nature of stellar remnants from core-collapse supernovae is still lacking.Aims. In this work, we investigate the properties of stellar remnants using a homogeneous grid of rotating and non-rotating massive stars at various metallicities.Methods. We simulated the supernova explosion of the evolved progenitors using the HYdrodynamic Ppm Explosion with Radiation diffusION (HYPERION) code, assuming a thermal bomb model calibrated to match the main properties of SN1987A.Results. We find that the heaviest black hole that can form depends on the initial stellar rotation, metallicity, and the assumed criterion for the onset of pulsational pair-instability supernovae. Non-rotating progenitors at [Fe/H] = −3 can form black holes up to ∼87, M, thus falling within the theorized pair-instability mass gap. Conversely, enhanced wind mass loss prevents the formation of BHs more massive than ∼41.6 M from rotating progenitors. We used our results to study the black hole mass distribution from a population of 106 isolated massive stars following a Kroupa initial mass function. Finally, we provide fitting formulas to compute the mass of compact remnants as a function of stellar progenitor properties. Our up-to-date prescriptions can be easily implemented in rapid population synthesis codes.
核心坍缩超新星的初始质量-残余质量关系
上下文。2015年首次直接探测到引力波标志着研究致密天体的新时代的开始。即将到来的探测器,如爱因斯坦望远镜,预计将增加数千个双星合并到列表中。然而,从理论的角度来看,我们对致密天体的理解受到许多不确定性的阻碍,对核心坍缩超新星恒星残骸性质的全面研究仍然缺乏。在这项工作中,我们使用不同金属量的旋转和非旋转大质量恒星的均匀网格来研究恒星残骸的性质。我们使用流体动力学Ppm爆炸与辐射扩散(HYPERION)代码模拟进化祖先的超新星爆炸,假设一个热弹模型校准以匹配sn1987a的主要特性。我们发现,最重的黑洞可以形成取决于最初的恒星旋转,金属丰度,和假定的标准开始脉动对不稳定超新星。[Fe/H] =−3的非旋转祖星可以形成高达~ 87,m⊙的黑洞,从而落在理论的对不稳定质量间隙内。相反,增强的风质量损失阻止了旋转前体形成质量大于41.6 M⊙的黑洞。我们利用我们的结果研究了106个孤立的大质量恒星在克鲁巴初始质量函数下的黑洞质量分布。最后,我们提供了计算紧致残余物质量作为恒星祖先性质函数的拟合公式。我们最新的处方可以很容易地在快速种群合成代码中执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信