Cardiac ischemia/reperfusion increases cardiomyocyte KLF5 in pigs and mice that aggravates tissue injury and remodeling

IF 10.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Nikolaos Mylonas, Georgios Siokatas, Effimia Zacharia, Christine Pol, Tyler Rolland, Ioannis D Kyriazis, Matthew Hoffman, Alycia Hildebrand, Thomas Bannister, Erhe Gao, Ira J Goldberg, Vincent W Yang, Agnieszka B Bialkowska, John Elrod, John M Canty, Ioanna Andreadou, Brian Weil, Konstantinos Drosatos
{"title":"Cardiac ischemia/reperfusion increases cardiomyocyte KLF5 in pigs and mice that aggravates tissue injury and remodeling","authors":"Nikolaos Mylonas, Georgios Siokatas, Effimia Zacharia, Christine Pol, Tyler Rolland, Ioannis D Kyriazis, Matthew Hoffman, Alycia Hildebrand, Thomas Bannister, Erhe Gao, Ira J Goldberg, Vincent W Yang, Agnieszka B Bialkowska, John Elrod, John M Canty, Ioanna Andreadou, Brian Weil, Konstantinos Drosatos","doi":"10.1093/cvr/cvaf040","DOIUrl":null,"url":null,"abstract":"Aims Activation of the transcriptional factor Krüppel-like factor 5 (KLF5) is detrimental to chronic heart failure. We explored the involvement of KLF5 in myocardial ischemia/reperfusion injury. Methods and results Yorkshire pigs underwent 75΄ of ischemia, followed by 3h or 24h of reperfusion. C57BL/6J mice underwent 30΄ of ischemia, followed by 10’, 2h, 12h, 24h, or 4 weeks of reperfusion. Hearts and isolated cardiomyocytes were analyzed for gene expression. We assessed cardiac function, infarct size (IS), oxidative stress, and fibrosis in mice subjected to pharmacologic or genetic KLF5 inhibition, as well as pharmacologic inhibition of NADPH oxidases or Glucose Transporter (GLUT)1 and GLUT4. Bulk RNA sequencing, untargeted 1H-NMR metabolomics and LC-MS lipidomics were performed. Isolated primary murine cardiomyocytes were infected with recombinant adenovirus expressing KLF5. During reperfusion, cardiοmyocyte KLF5 expression was increased in porcine and murine hearts. Pharmacologic or cardiomyocyte-specific genetic inhibition of KLF5 reduced IS and improved cardiac function in mice. Importantly, acute KLF5 inhibition during early reperfusion suppressed fibrosis and preserved systolic cardiac function 4 weeks post-ischemia/reperfusion. This improvement was associated with lower NOX4 expression, less oxidative stress, and suppressed inflammation and cell apoptosis. Pharmacologic inhibition of NOX4 conferred the same benefit. Metabolomic analysis indicated that KLF5 inhibition lowered glucose-derived metabolites (UDP-Glucose and Lactate) at early reperfusion. Accordingly, cardiac GLUT1 and GLUT4 levels were increased with ischemia/reperfusion, which was reverted by KLF5 inhibition. Pharmacologic inhibition of both GLUT1/4 reduced IS. Finally, myocardial KLF5 overexpression increased GLUT1 mRNA levels and mouse mortality. Conclusions Ischemia/reperfusion increases cardiomyocyte KLF5 expression in pigs and mice. This constitutes a central element of myocardial injury pathophysiology and is associated with stimulation of GLUT1 and GLUT4 expression, activation of NOX4, oxidative stress, inflammation and apoptosis. Acute KLF5 inhibition during reperfusion constitutes a novel therapeutic approach against myocardial ischemia/reperfusion injury.","PeriodicalId":9638,"journal":{"name":"Cardiovascular Research","volume":"42 1","pages":""},"PeriodicalIF":10.2000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cvr/cvaf040","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Aims Activation of the transcriptional factor Krüppel-like factor 5 (KLF5) is detrimental to chronic heart failure. We explored the involvement of KLF5 in myocardial ischemia/reperfusion injury. Methods and results Yorkshire pigs underwent 75΄ of ischemia, followed by 3h or 24h of reperfusion. C57BL/6J mice underwent 30΄ of ischemia, followed by 10’, 2h, 12h, 24h, or 4 weeks of reperfusion. Hearts and isolated cardiomyocytes were analyzed for gene expression. We assessed cardiac function, infarct size (IS), oxidative stress, and fibrosis in mice subjected to pharmacologic or genetic KLF5 inhibition, as well as pharmacologic inhibition of NADPH oxidases or Glucose Transporter (GLUT)1 and GLUT4. Bulk RNA sequencing, untargeted 1H-NMR metabolomics and LC-MS lipidomics were performed. Isolated primary murine cardiomyocytes were infected with recombinant adenovirus expressing KLF5. During reperfusion, cardiοmyocyte KLF5 expression was increased in porcine and murine hearts. Pharmacologic or cardiomyocyte-specific genetic inhibition of KLF5 reduced IS and improved cardiac function in mice. Importantly, acute KLF5 inhibition during early reperfusion suppressed fibrosis and preserved systolic cardiac function 4 weeks post-ischemia/reperfusion. This improvement was associated with lower NOX4 expression, less oxidative stress, and suppressed inflammation and cell apoptosis. Pharmacologic inhibition of NOX4 conferred the same benefit. Metabolomic analysis indicated that KLF5 inhibition lowered glucose-derived metabolites (UDP-Glucose and Lactate) at early reperfusion. Accordingly, cardiac GLUT1 and GLUT4 levels were increased with ischemia/reperfusion, which was reverted by KLF5 inhibition. Pharmacologic inhibition of both GLUT1/4 reduced IS. Finally, myocardial KLF5 overexpression increased GLUT1 mRNA levels and mouse mortality. Conclusions Ischemia/reperfusion increases cardiomyocyte KLF5 expression in pigs and mice. This constitutes a central element of myocardial injury pathophysiology and is associated with stimulation of GLUT1 and GLUT4 expression, activation of NOX4, oxidative stress, inflammation and apoptosis. Acute KLF5 inhibition during reperfusion constitutes a novel therapeutic approach against myocardial ischemia/reperfusion injury.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cardiovascular Research
Cardiovascular Research 医学-心血管系统
CiteScore
21.50
自引率
3.70%
发文量
547
审稿时长
1 months
期刊介绍: Cardiovascular Research Journal Overview: International journal of the European Society of Cardiology Focuses on basic and translational research in cardiology and cardiovascular biology Aims to enhance insight into cardiovascular disease mechanisms and innovation prospects Submission Criteria: Welcomes papers covering molecular, sub-cellular, cellular, organ, and organism levels Accepts clinical proof-of-concept and translational studies Manuscripts expected to provide significant contribution to cardiovascular biology and diseases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信