Optical Flow-Enhanced Mamba U-Net for Cardiac Phase Detection in Ultrasound Videos

Yuhuan Lu;Guanghua Tan;Bin Pu;Pak-Hei Yeung;Hang Wang;Shengli Li;Jagath C. Rajapakse;Kenli Li
{"title":"Optical Flow-Enhanced Mamba U-Net for Cardiac Phase Detection in Ultrasound Videos","authors":"Yuhuan Lu;Guanghua Tan;Bin Pu;Pak-Hei Yeung;Hang Wang;Shengli Li;Jagath C. Rajapakse;Kenli Li","doi":"10.1109/TMI.2025.3550731","DOIUrl":null,"url":null,"abstract":"The detection of cardiac phase in ultrasound videos, identifying end-systolic (ES) and end-diastolic (ED) frames, is a critical step in assessing cardiac function, monitoring structural changes, and diagnosing congenital heart disease. Current popular methods use recurrent neural networks to track dependencies over long sequences for cardiac phase detection, but often overlook the short-term motion of cardiac valves that sonographers rely on. In this paper, we propose a novel optical flow-enhanced Mamba U-net framework, designed to utilize both short-term motion and long-term dependencies to detect the cardiac phase in ultrasound videos. We utilize optical flow to capture the short-term motion of cardiac muscles and valves between adjacent frames, enhancing the input video. The Mamba layer is employed to track long-term dependencies across cardiac cycles. We then develop regression branches using the U-Net architecture, which integrates short-term and long-term information while extracting multi-scale features. Using this method, we can generate regression scores for each frame and identify keyframes (i.e., ES and ED frames). Additionally, we design a keyframe weighted loss function to guide the network to focus more on keyframes rather than intermediate period frames. Our method demonstrates superior performance compared to advanced baseline methods, achieving frame mismatches of 1.465 frames for ES and 0.842 frames for ED in the Fetal Echocardiogram dataset, where heart rates are higher and phase changes occur rapidly, and 2.444 frames and 2.072 frames in the publicly available adult Echonet-Dynamic dataset. Its accuracy and robustness in both fetal and adult datasets highlight its potential for clinical application.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 7","pages":"2831-2841"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10924215/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The detection of cardiac phase in ultrasound videos, identifying end-systolic (ES) and end-diastolic (ED) frames, is a critical step in assessing cardiac function, monitoring structural changes, and diagnosing congenital heart disease. Current popular methods use recurrent neural networks to track dependencies over long sequences for cardiac phase detection, but often overlook the short-term motion of cardiac valves that sonographers rely on. In this paper, we propose a novel optical flow-enhanced Mamba U-net framework, designed to utilize both short-term motion and long-term dependencies to detect the cardiac phase in ultrasound videos. We utilize optical flow to capture the short-term motion of cardiac muscles and valves between adjacent frames, enhancing the input video. The Mamba layer is employed to track long-term dependencies across cardiac cycles. We then develop regression branches using the U-Net architecture, which integrates short-term and long-term information while extracting multi-scale features. Using this method, we can generate regression scores for each frame and identify keyframes (i.e., ES and ED frames). Additionally, we design a keyframe weighted loss function to guide the network to focus more on keyframes rather than intermediate period frames. Our method demonstrates superior performance compared to advanced baseline methods, achieving frame mismatches of 1.465 frames for ES and 0.842 frames for ED in the Fetal Echocardiogram dataset, where heart rates are higher and phase changes occur rapidly, and 2.444 frames and 2.072 frames in the publicly available adult Echonet-Dynamic dataset. Its accuracy and robustness in both fetal and adult datasets highlight its potential for clinical application.
光流增强Mamba U-Net用于超声视频中的心脏相位检测
在超声影像中检测心脏期,识别收缩末期(ES)和舒张末期(ED)框架,是评估心脏功能、监测结构变化和诊断先天性心脏病的关键步骤。目前流行的方法是使用递归神经网络来跟踪长序列的依赖性,以进行心脏相位检测,但往往忽略了超声医师所依赖的心脏瓣膜的短期运动。在本文中,我们提出了一种新的光流增强Mamba U-net框架,旨在利用短期运动和长期依赖来检测超声视频中的心脏相位。我们利用光流捕捉相邻帧之间心肌和瓣膜的短期运动,增强输入视频。曼巴层用于跟踪心脏周期的长期依赖性。然后,我们使用U-Net架构开发回归分支,该架构在提取多尺度特征的同时集成了短期和长期信息。使用这种方法,我们可以为每一帧生成回归分数,并识别关键帧(即ES和ED帧)。此外,我们设计了一个关键帧加权损失函数来引导网络更多地关注关键帧而不是中间周期帧。与先进的基线方法相比,我们的方法表现出更好的性能,在胎儿超声心动图数据集中,心率较高且相位变化迅速的ES和ED的帧错配率分别为1.465帧和0.842帧,而在公开可用的成人超声心动图数据集中,这两种方法的帧错配率分别为2.444帧和2.072帧。它在胎儿和成人数据集中的准确性和稳健性突出了其临床应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信