Enhancing diagnostic capability with multi-agents conversational large language models

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Xi Chen, Huahui Yi, Mingke You, WeiZhi Liu, Li Wang, Hairui Li, Xue Zhang, Yingman Guo, Lei Fan, Gang Chen, Qicheng Lao, Weili Fu, Kang Li, Jian Li
{"title":"Enhancing diagnostic capability with multi-agents conversational large language models","authors":"Xi Chen, Huahui Yi, Mingke You, WeiZhi Liu, Li Wang, Hairui Li, Xue Zhang, Yingman Guo, Lei Fan, Gang Chen, Qicheng Lao, Weili Fu, Kang Li, Jian Li","doi":"10.1038/s41746-025-01550-0","DOIUrl":null,"url":null,"abstract":"<p>Large Language Models (LLMs) show promise in healthcare tasks but face challenges in complex medical scenarios. We developed a Multi-Agent Conversation (MAC) framework for disease diagnosis, inspired by clinical Multi-Disciplinary Team discussions. Using 302 rare disease cases, we evaluated GPT-3.5, GPT-4, and MAC on medical knowledge and clinical reasoning. MAC outperformed single models in both primary and follow-up consultations, achieving higher accuracy in diagnoses and suggested tests. Optimal performance was achieved with four doctor agents and a supervisor agent, using GPT-4 as the base model. MAC demonstrated high consistency across repeated runs. Further comparative analysis showed MAC also outperformed other methods including Chain of Thoughts (CoT), Self-Refine, and Self-Consistency with higher performance and more output tokens. This framework significantly enhanced LLMs’ diagnostic capabilities, effectively bridging theoretical knowledge and practical clinical application. Our findings highlight the potential of multi-agent LLMs in healthcare and suggest further research into their clinical implementation.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"56 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01550-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Large Language Models (LLMs) show promise in healthcare tasks but face challenges in complex medical scenarios. We developed a Multi-Agent Conversation (MAC) framework for disease diagnosis, inspired by clinical Multi-Disciplinary Team discussions. Using 302 rare disease cases, we evaluated GPT-3.5, GPT-4, and MAC on medical knowledge and clinical reasoning. MAC outperformed single models in both primary and follow-up consultations, achieving higher accuracy in diagnoses and suggested tests. Optimal performance was achieved with four doctor agents and a supervisor agent, using GPT-4 as the base model. MAC demonstrated high consistency across repeated runs. Further comparative analysis showed MAC also outperformed other methods including Chain of Thoughts (CoT), Self-Refine, and Self-Consistency with higher performance and more output tokens. This framework significantly enhanced LLMs’ diagnostic capabilities, effectively bridging theoretical knowledge and practical clinical application. Our findings highlight the potential of multi-agent LLMs in healthcare and suggest further research into their clinical implementation.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信