Xi Chen, Huahui Yi, Mingke You, WeiZhi Liu, Li Wang, Hairui Li, Xue Zhang, Yingman Guo, Lei Fan, Gang Chen, Qicheng Lao, Weili Fu, Kang Li, Jian Li
{"title":"Enhancing diagnostic capability with multi-agents conversational large language models","authors":"Xi Chen, Huahui Yi, Mingke You, WeiZhi Liu, Li Wang, Hairui Li, Xue Zhang, Yingman Guo, Lei Fan, Gang Chen, Qicheng Lao, Weili Fu, Kang Li, Jian Li","doi":"10.1038/s41746-025-01550-0","DOIUrl":null,"url":null,"abstract":"<p>Large Language Models (LLMs) show promise in healthcare tasks but face challenges in complex medical scenarios. We developed a Multi-Agent Conversation (MAC) framework for disease diagnosis, inspired by clinical Multi-Disciplinary Team discussions. Using 302 rare disease cases, we evaluated GPT-3.5, GPT-4, and MAC on medical knowledge and clinical reasoning. MAC outperformed single models in both primary and follow-up consultations, achieving higher accuracy in diagnoses and suggested tests. Optimal performance was achieved with four doctor agents and a supervisor agent, using GPT-4 as the base model. MAC demonstrated high consistency across repeated runs. Further comparative analysis showed MAC also outperformed other methods including Chain of Thoughts (CoT), Self-Refine, and Self-Consistency with higher performance and more output tokens. This framework significantly enhanced LLMs’ diagnostic capabilities, effectively bridging theoretical knowledge and practical clinical application. Our findings highlight the potential of multi-agent LLMs in healthcare and suggest further research into their clinical implementation.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"56 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01550-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Large Language Models (LLMs) show promise in healthcare tasks but face challenges in complex medical scenarios. We developed a Multi-Agent Conversation (MAC) framework for disease diagnosis, inspired by clinical Multi-Disciplinary Team discussions. Using 302 rare disease cases, we evaluated GPT-3.5, GPT-4, and MAC on medical knowledge and clinical reasoning. MAC outperformed single models in both primary and follow-up consultations, achieving higher accuracy in diagnoses and suggested tests. Optimal performance was achieved with four doctor agents and a supervisor agent, using GPT-4 as the base model. MAC demonstrated high consistency across repeated runs. Further comparative analysis showed MAC also outperformed other methods including Chain of Thoughts (CoT), Self-Refine, and Self-Consistency with higher performance and more output tokens. This framework significantly enhanced LLMs’ diagnostic capabilities, effectively bridging theoretical knowledge and practical clinical application. Our findings highlight the potential of multi-agent LLMs in healthcare and suggest further research into their clinical implementation.
期刊介绍:
npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics.
The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.