Yi-han Sheu, Jaak Simm, Bo Wang, Hyunjoon Lee, Jordan W. Smoller
{"title":"Continuous time and dynamic suicide attempt risk prediction with neural ordinary differential equations","authors":"Yi-han Sheu, Jaak Simm, Bo Wang, Hyunjoon Lee, Jordan W. Smoller","doi":"10.1038/s41746-025-01552-y","DOIUrl":null,"url":null,"abstract":"<p>Current clinician-based and automated risk assessment methods treat the risk of suicide-related behaviors (SRBs) as static, while in actual clinical practice, SRB risk fluctuates over time. Here, we develop two closely related model classes, Event-GRU-ODE and Event-GRU-Discretized, that can predict the dynamic risk of events as a continuous trajectory across future time points, even without new observations, while updating these estimates as new data become available. Models were trained and validated for SRB prediction using a large electronic health record database. Both models demonstrated high discrimination (e.g., Event-GRU-ODE AUROC = 0.93, AUPRC = 0.10, relative risk = 13.4 at 95% specificity in a low-prevalence [0.15%] general cohort with a 1.5-year prediction window). This work provides an initial step toward developing novel suicide prevention strategies based on dynamic changes in risk.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"11 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01552-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Current clinician-based and automated risk assessment methods treat the risk of suicide-related behaviors (SRBs) as static, while in actual clinical practice, SRB risk fluctuates over time. Here, we develop two closely related model classes, Event-GRU-ODE and Event-GRU-Discretized, that can predict the dynamic risk of events as a continuous trajectory across future time points, even without new observations, while updating these estimates as new data become available. Models were trained and validated for SRB prediction using a large electronic health record database. Both models demonstrated high discrimination (e.g., Event-GRU-ODE AUROC = 0.93, AUPRC = 0.10, relative risk = 13.4 at 95% specificity in a low-prevalence [0.15%] general cohort with a 1.5-year prediction window). This work provides an initial step toward developing novel suicide prevention strategies based on dynamic changes in risk.
期刊介绍:
npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics.
The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.