[Relationship between certain uses of artificial intelligence and psychosocial risk factors in European work environments].

Raúl Payá Castiblanque, Alejandro Pizzi
{"title":"[Relationship between certain uses of artificial intelligence and psychosocial risk factors in European work environments].","authors":"Raúl Payá Castiblanque, Alejandro Pizzi","doi":"10.12961/aprl.2024.27.03.02","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>To examine the relationship between the use of Artificial Intelligence (AI) to assess and monitor job performance and exposure to psychosocial risk factors, as well as associated adverse health effects in the European work environment.</p><p><strong>Method: </strong>Cross-sectional study using microdata from the 2022 \"Occupational Safety and Health in Post-Pandemic Workplaces (Flash Eurobarometer)\" survey (EU-OSHA) with 27252 participants. After selecting 12 dichotomous dependent variables (psychosocial risks and adverse health effects) and the presence of AI and its various uses to supervise and evaluate workers performance as independent variables, we calculated the crude and adjusted (aOR) odds ratios by sociodemographic covariates and their corresponding 95% confidence intervals (95%CI).</p><p><strong>Results: </strong>When AI is used to monitor or control individual performance, it increases time pressure and work overload (ORa=1.5;95%CI:1.3-1.7), reduces autonomy or influence over work processes (ORa=2.2;95%CI:2.1-2.3), and erodes communication or cooperation within the organization (ORa=1.5;95%CI:1.4-1.6). It also increases the probability of reporting stress, depression or anxiety (ORa=1.5; 95%CI:1.4-1.5) and accidents or injuries (ORa=1.7; 95%CI:1.6-1.8).</p><p><strong>Conclusions: </strong>AI as a \"digital supervisor\" increases exposure to psychosocial risk factors and the likelihood of health damage. This highlights the importance of considering worker well-being along with economic efficiency when implementing AI in work organizations. These results can guide labor policies to balance process optimization with healthy work environments through social dialogue.</p>","PeriodicalId":101300,"journal":{"name":"Archivos de prevencion de riesgos laborales","volume":"27 3","pages":"233-249"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archivos de prevencion de riesgos laborales","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12961/aprl.2024.27.03.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: To examine the relationship between the use of Artificial Intelligence (AI) to assess and monitor job performance and exposure to psychosocial risk factors, as well as associated adverse health effects in the European work environment.

Method: Cross-sectional study using microdata from the 2022 "Occupational Safety and Health in Post-Pandemic Workplaces (Flash Eurobarometer)" survey (EU-OSHA) with 27252 participants. After selecting 12 dichotomous dependent variables (psychosocial risks and adverse health effects) and the presence of AI and its various uses to supervise and evaluate workers performance as independent variables, we calculated the crude and adjusted (aOR) odds ratios by sociodemographic covariates and their corresponding 95% confidence intervals (95%CI).

Results: When AI is used to monitor or control individual performance, it increases time pressure and work overload (ORa=1.5;95%CI:1.3-1.7), reduces autonomy or influence over work processes (ORa=2.2;95%CI:2.1-2.3), and erodes communication or cooperation within the organization (ORa=1.5;95%CI:1.4-1.6). It also increases the probability of reporting stress, depression or anxiety (ORa=1.5; 95%CI:1.4-1.5) and accidents or injuries (ORa=1.7; 95%CI:1.6-1.8).

Conclusions: AI as a "digital supervisor" increases exposure to psychosocial risk factors and the likelihood of health damage. This highlights the importance of considering worker well-being along with economic efficiency when implementing AI in work organizations. These results can guide labor policies to balance process optimization with healthy work environments through social dialogue.

[欧洲工作环境中人工智能的某些使用与社会心理风险因素之间的关系]。
前言:研究在欧洲工作环境中使用人工智能(AI)评估和监测工作绩效与暴露于心理社会风险因素以及相关的不利健康影响之间的关系。方法:使用来自2022年“大流行后工作场所的职业安全与健康(欧洲晴雨表)”调查(EU-OSHA)的微观数据进行横断面研究,共有27252名参与者。在选择了12个二分类因变量(社会心理风险和不良健康影响)以及人工智能的存在及其用于监督和评估工人绩效的各种用途作为自变量后,我们计算了社会人口统计学协变量的粗比值比和调整比值比及其相应的95%置信区间(95% ci)。结果:当人工智能被用于监测或控制个人绩效时,它增加了时间压力和工作过载(ORa=1.5;95%CI:1.3-1.7),降低了对工作过程的自主权或影响力(ORa=2.2;95%CI:2.1-2.3),并侵蚀了组织内部的沟通或合作(ORa=1.5;95%CI:1.4-1.6)。它还增加了报告压力、抑郁或焦虑的可能性(ORa=1.5;95%CI:1.4-1.5)和事故或伤害(ORa=1.7;95%置信区间:1.6—-1.8)。结论:人工智能作为“数字监督者”,增加了接触社会心理风险因素和健康损害的可能性。这突出了在工作组织中实施人工智能时考虑工人福祉和经济效率的重要性。这些结果可以指导劳工政策通过社会对话来平衡流程优化和健康的工作环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信