Development of a small animal bone-anchored limb replacement model for infection interventions.

Bailey V Fearing, Sarah M Romereim, Kerry Danelson, Matthew Smykowski, Marina Barankevich, Ryan Serbin, Nainisha Chintalapudi, Jana Davis, Susan Appt, Heather Burkart, Rachel B Seymour, Joseph R Hsu
{"title":"Development of a small animal bone-anchored limb replacement model for infection interventions.","authors":"Bailey V Fearing, Sarah M Romereim, Kerry Danelson, Matthew Smykowski, Marina Barankevich, Ryan Serbin, Nainisha Chintalapudi, Jana Davis, Susan Appt, Heather Burkart, Rachel B Seymour, Joseph R Hsu","doi":"10.1097/OI9.0000000000000366","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Osseointegration-associated infections are a critical barrier to widespread implementation of osseointegrated (OI) prosthetics. To address this challenge, a preclinical animal model must exist of the human model to test potential interventions. In this article, we describe a novel rabbit model of OI implant-related infection that can act as a platform for rapid translation and development of therapeutic approaches to combat these uniquely challenging infections.</p><p><strong>Methods: </strong>A single-stage amputation was performed by exposure, transection, reaming, and tapping of the tibia, followed by placement of a 75-mm Ti-6Al-4V cortical screw implant. Muscle and skin were closed, and a prosthetic was attached to the screw. Hematology, clinical chemistry, and imaging were performed up to 8 weeks. High-resolution microCT and histology were conducted at terminal end points. Intraosseous vancomycin delivery was compared with intravenous delivery. Serum and bone marrow collection was conducted across a period of 5 hours.</p><p><strong>Results: </strong>Rabbits maintained normal ambulation, mobility, diet, and weight throughout the study period. Clinical chemistry results indicate normal ranges over the study course. microCT and histology demonstrate osseointegration between the threads of the implant within the medullary cavity. Pharmacokinetic data determined that intraosseous vancomycin delivery results in significantly lower vancomycin concentrations systemically compared with intravenous delivery and higher peak vancomycin concentration within the tibial canal.</p><p><strong>Conclusion: </strong>This preclinical translational model represents a reproducible small animal model of OI transtibial amputation that successfully recreates the bone-skin-implant interface, material-bone interactions to match human OI, and a similar immune response. Preclinical efficacy of infection interventions will be further explored with establishment of this model.</p>","PeriodicalId":74381,"journal":{"name":"OTA international : the open access journal of orthopaedic trauma","volume":"8 1 Suppl","pages":"e366"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11892714/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OTA international : the open access journal of orthopaedic trauma","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/OI9.0000000000000366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Osseointegration-associated infections are a critical barrier to widespread implementation of osseointegrated (OI) prosthetics. To address this challenge, a preclinical animal model must exist of the human model to test potential interventions. In this article, we describe a novel rabbit model of OI implant-related infection that can act as a platform for rapid translation and development of therapeutic approaches to combat these uniquely challenging infections.

Methods: A single-stage amputation was performed by exposure, transection, reaming, and tapping of the tibia, followed by placement of a 75-mm Ti-6Al-4V cortical screw implant. Muscle and skin were closed, and a prosthetic was attached to the screw. Hematology, clinical chemistry, and imaging were performed up to 8 weeks. High-resolution microCT and histology were conducted at terminal end points. Intraosseous vancomycin delivery was compared with intravenous delivery. Serum and bone marrow collection was conducted across a period of 5 hours.

Results: Rabbits maintained normal ambulation, mobility, diet, and weight throughout the study period. Clinical chemistry results indicate normal ranges over the study course. microCT and histology demonstrate osseointegration between the threads of the implant within the medullary cavity. Pharmacokinetic data determined that intraosseous vancomycin delivery results in significantly lower vancomycin concentrations systemically compared with intravenous delivery and higher peak vancomycin concentration within the tibial canal.

Conclusion: This preclinical translational model represents a reproducible small animal model of OI transtibial amputation that successfully recreates the bone-skin-implant interface, material-bone interactions to match human OI, and a similar immune response. Preclinical efficacy of infection interventions will be further explored with establishment of this model.

开发用于感染干预的小动物骨锚肢体置换模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信