Optimal Mating Combination for Directed Breeding in a Racially Composite Cattle Population.

IF 1.9 3区 农林科学 Q2 AGRICULTURE, DAIRY & ANIMAL SCIENCE
João Vitor Teodoro, Gerson Barreto Mourão, Rachel Santos Bueno Carvalho, Elisângela Chicaroni de Mattos, José Bento Sterman Ferraz, Joanir Pereira Eler
{"title":"Optimal Mating Combination for Directed Breeding in a Racially Composite Cattle Population.","authors":"João Vitor Teodoro, Gerson Barreto Mourão, Rachel Santos Bueno Carvalho, Elisângela Chicaroni de Mattos, José Bento Sterman Ferraz, Joanir Pereira Eler","doi":"10.1111/jbg.12936","DOIUrl":null,"url":null,"abstract":"<p><p>Evaluating optimal mating combinations in large populations poses significant combinatorial and computational challenges. To address this, we propose a method to optimise mating combinations in composite cattle populations, incorporating heterosis and genetic variability. Leveraging integer linear programming, our approach maximises expected offspring merit, outperforming random mating systems. A robust mathematical model and specialised software were developed to implement the method, demonstrating its effectiveness on a real dataset. Notably, results reveal a 14.8% superiority over random mating averages and a 12.4% advantage over random mating maxima. The method's flexibility and adaptability enable constraint inclusion and application to diverse species and genomic data, making it an indispensable tool for enhancing mating selection efficiency and effectiveness in composite beef cattle breeding programmes.</p>","PeriodicalId":54885,"journal":{"name":"Journal of Animal Breeding and Genetics","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Breeding and Genetics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/jbg.12936","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Evaluating optimal mating combinations in large populations poses significant combinatorial and computational challenges. To address this, we propose a method to optimise mating combinations in composite cattle populations, incorporating heterosis and genetic variability. Leveraging integer linear programming, our approach maximises expected offspring merit, outperforming random mating systems. A robust mathematical model and specialised software were developed to implement the method, demonstrating its effectiveness on a real dataset. Notably, results reveal a 14.8% superiority over random mating averages and a 12.4% advantage over random mating maxima. The method's flexibility and adaptability enable constraint inclusion and application to diverse species and genomic data, making it an indispensable tool for enhancing mating selection efficiency and effectiveness in composite beef cattle breeding programmes.

种族复合牛群体定向育种的最佳交配组合。
在大种群中评估最佳交配组合提出了重大的组合和计算挑战。为了解决这个问题,我们提出了一种结合杂种优势和遗传变异的方法来优化复合牛种群的交配组合。利用整数线性规划,我们的方法最大限度地提高了预期后代的价值,优于随机交配系统。开发了稳健的数学模型和专门的软件来实现该方法,并在实际数据集上证明了其有效性。值得注意的是,结果显示,与随机交配平均值相比,其优势为14.8%,与随机交配最大值相比,其优势为12.4%。该方法的灵活性和适应性使约束包含和应用于不同的物种和基因组数据,使其成为提高复合肉牛育种计划中交配选择效率和有效性的不可或缺的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Animal Breeding and Genetics
Journal of Animal Breeding and Genetics 农林科学-奶制品与动物科学
CiteScore
5.20
自引率
3.80%
发文量
58
审稿时长
12-24 weeks
期刊介绍: The Journal of Animal Breeding and Genetics publishes original articles by international scientists on genomic selection, and any other topic related to breeding programmes, selection, quantitative genetic, genomics, diversity and evolution of domestic animals. Researchers, teachers, and the animal breeding industry will find the reports of interest. Book reviews appear in many issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信