{"title":"Spiking Neuron-Astrocyte Networks for Image Recognition","authors":"Jhunlyn Lorenzo;Juan-Antonio Rico-Gallego;Stéphane Binczak;Sabir Jacquir","doi":"10.1162/neco_a_01740","DOIUrl":null,"url":null,"abstract":"From biological and artificial network perspectives, researchers have started acknowledging astrocytes as computational units mediating neural processes. Here, we propose a novel biologically inspired neuron-astrocyte network model for image recognition, one of the first attempts at implementing astrocytes in spiking neuron networks (SNNs) using a standard data set. The architecture for image recognition has three primary units: the preprocessing unit for converting the image pixels into spiking patterns, the neuron-astrocyte network forming bipartite (neural connections) and tripartite synapses (neural and astrocytic connections), and the classifier unit. In the astrocyte-mediated SNNs, an astrocyte integrates neural signals following the simplified Postnov model. It then modulates the integrate-and-fire (IF) neurons via gliotransmission, thereby strengthening the synaptic connections of the neurons within the astrocytic territory. We develop an architecture derived from a baseline SNN model for unsupervised digit classification. The spiking neuron-astrocyte networks (SNANs) display better network performance with an optimal variance-bias trade-off than SNN alone. We demonstrate that astrocytes promote faster learning, support memory formation and recognition, and provide a simplified network architecture. Our proposed SNAN can serve as a benchmark for future researchers on astrocyte implementation in artificial networks, particularly in neuromorphic systems, for its simplified design.","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":"37 4","pages":"635-665"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10938761/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
From biological and artificial network perspectives, researchers have started acknowledging astrocytes as computational units mediating neural processes. Here, we propose a novel biologically inspired neuron-astrocyte network model for image recognition, one of the first attempts at implementing astrocytes in spiking neuron networks (SNNs) using a standard data set. The architecture for image recognition has three primary units: the preprocessing unit for converting the image pixels into spiking patterns, the neuron-astrocyte network forming bipartite (neural connections) and tripartite synapses (neural and astrocytic connections), and the classifier unit. In the astrocyte-mediated SNNs, an astrocyte integrates neural signals following the simplified Postnov model. It then modulates the integrate-and-fire (IF) neurons via gliotransmission, thereby strengthening the synaptic connections of the neurons within the astrocytic territory. We develop an architecture derived from a baseline SNN model for unsupervised digit classification. The spiking neuron-astrocyte networks (SNANs) display better network performance with an optimal variance-bias trade-off than SNN alone. We demonstrate that astrocytes promote faster learning, support memory formation and recognition, and provide a simplified network architecture. Our proposed SNAN can serve as a benchmark for future researchers on astrocyte implementation in artificial networks, particularly in neuromorphic systems, for its simplified design.
期刊介绍:
Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.