Functional Activity and Binding Specificity of Small Ankyrin Repeat Proteins Called Ankyrons Against SARS-CoV-2 Variants.

IF 5 3区 医学 Q1 PHARMACOLOGY & PHARMACY
Yun-Jong Park, Wojciech Jankowski, Nicholas C Hurst, Jeremy W Fry, Nikolai F Schwabe, Linda C C Tan, Zuben E Sauna
{"title":"Functional Activity and Binding Specificity of Small Ankyrin Repeat Proteins Called Ankyrons Against SARS-CoV-2 Variants.","authors":"Yun-Jong Park, Wojciech Jankowski, Nicholas C Hurst, Jeremy W Fry, Nikolai F Schwabe, Linda C C Tan, Zuben E Sauna","doi":"10.1208/s12248-025-01043-8","DOIUrl":null,"url":null,"abstract":"<p><p>Effective management of COVID-19 requires clinical tools to treat the disease in addition to preventive vaccines. Several recombinant mAbs and their cocktails have been developed to treat COVID-19 but these have limitations. Here, we evaluate small ankyrin repeat proteins called Ankyrons that were generated to bind with high affinity to the SARS-CoV-2 virus. Ankyrons are ankyrin repeat proteins comprised of repetitions a structural module. Each module consists of a β-turn followed by two antiparallel α-helices. The Ankyrons™ are directly selected in vitro from a highly diverse library of around a trillion clones in ribosome display and like antibodies can bind with high affinity to almost any target. We assessed Ankyrons that were generated against the wild-type SARS-CoV-2 and the Delta (B.1.617.2) and Omicron (BA.1) variants in a binding assay. We determined that all Ankyrons were specific in that they did not bind to MERS. While all Ankyrons bound with high affinity to the variant they were generated against, some also showed cross-reactivity to all three SARS-CoV-2 variants. Binding assays are useful for screening analytes but do not provide information about clinical effectiveness. Therefore, we used a pseudovirus-based neutralization assay to show that five of the Ankyrons evaluated neutralized all three strains of SARS-CoV-2. We have provided a workflow for the evaluation of novel Ankyrons against a viral target. This suggests that Ankyrons could be useful for rapidly developing new research tools for studying other emerging infectious diseases rapidly with the optional further potential for developing Ankyrons into diagnostic and even therapeutic applications.</p>","PeriodicalId":50934,"journal":{"name":"AAPS Journal","volume":"27 2","pages":"58"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1208/s12248-025-01043-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Effective management of COVID-19 requires clinical tools to treat the disease in addition to preventive vaccines. Several recombinant mAbs and their cocktails have been developed to treat COVID-19 but these have limitations. Here, we evaluate small ankyrin repeat proteins called Ankyrons that were generated to bind with high affinity to the SARS-CoV-2 virus. Ankyrons are ankyrin repeat proteins comprised of repetitions a structural module. Each module consists of a β-turn followed by two antiparallel α-helices. The Ankyrons™ are directly selected in vitro from a highly diverse library of around a trillion clones in ribosome display and like antibodies can bind with high affinity to almost any target. We assessed Ankyrons that were generated against the wild-type SARS-CoV-2 and the Delta (B.1.617.2) and Omicron (BA.1) variants in a binding assay. We determined that all Ankyrons were specific in that they did not bind to MERS. While all Ankyrons bound with high affinity to the variant they were generated against, some also showed cross-reactivity to all three SARS-CoV-2 variants. Binding assays are useful for screening analytes but do not provide information about clinical effectiveness. Therefore, we used a pseudovirus-based neutralization assay to show that five of the Ankyrons evaluated neutralized all three strains of SARS-CoV-2. We have provided a workflow for the evaluation of novel Ankyrons against a viral target. This suggests that Ankyrons could be useful for rapidly developing new research tools for studying other emerging infectious diseases rapidly with the optional further potential for developing Ankyrons into diagnostic and even therapeutic applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
AAPS Journal
AAPS Journal 医学-药学
CiteScore
7.80
自引率
4.40%
发文量
109
审稿时长
1 months
期刊介绍: The AAPS Journal, an official journal of the American Association of Pharmaceutical Scientists (AAPS), publishes novel and significant findings in the various areas of pharmaceutical sciences impacting human and veterinary therapeutics, including: · Drug Design and Discovery · Pharmaceutical Biotechnology · Biopharmaceutics, Formulation, and Drug Delivery · Metabolism and Transport · Pharmacokinetics, Pharmacodynamics, and Pharmacometrics · Translational Research · Clinical Evaluations and Therapeutic Outcomes · Regulatory Science We invite submissions under the following article types: · Original Research Articles · Reviews and Mini-reviews · White Papers, Commentaries, and Editorials · Meeting Reports · Brief/Technical Reports and Rapid Communications · Regulatory Notes · Tutorials · Protocols in the Pharmaceutical Sciences In addition, The AAPS Journal publishes themes, organized by guest editors, which are focused on particular areas of current interest to our field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信