Quantitative Magnetic Resonance Imaging Methods for the Assessment and Prediction of Treatment Response to Transarterial Chemoembolization in Hepatocellular Carcinoma.
IF 3.8 2区 医学Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
{"title":"Quantitative Magnetic Resonance Imaging Methods for the Assessment and Prediction of Treatment Response to Transarterial Chemoembolization in Hepatocellular Carcinoma.","authors":"Jingwen Zhang, Cheng Yan, Yingxuan Wang, Mingzi Gao, Jing Han, Mingxin Zhang, Yujie Chen, Liqin Zhao","doi":"10.1016/j.acra.2025.02.042","DOIUrl":null,"url":null,"abstract":"<p><p>This article reviews the state-of-the-art applications of quantitative magnetic resonance imaging (qMRI) in predicting and evaluating response to transarterial chemoembolization (TACE) in patients with hepatocellular carcinoma (HCC). HCC is a highly heterogeneous tumor, and its response to TACE varies significantly among patients. Early identification of treatment response is critical for optimizing management. Promising results have been reported using various qMRI methods, including hepatocyte-specific contrast-enhanced MRI, diffusion imaging, perfusion imaging, magnetic resonance spectroscopy (MRS), blood oxygen level-dependent functional MRI (BOLD-fMRI), magnetic resonance elastography (MRE), and artificial intelligence (AI). The coefficient of variation in the hepatobiliary phase of hepatocyte-specific contrast-enhanced MRI, which quantifies signal heterogeneity, may predict TACE outcomes. Among diffusion imaging methods, diffusion kurtosis imaging has outperformed intravoxel incoherent motion and diffusion-weighted imaging (DWI), while perfusion imaging has shown a lower area under the curve (AUC) compared to diffusion imaging. Combining MRS with DWI has achieved an AUC of 1.000 for early assessment of TACE response. However, BOLD-fMRI and MRE remain underexplored and lack established models with key quantitative parameters. AI models incorporating radiomics or deep learning with clinical factors have shown promising AUC values ranging from 0.690 to 1.000 in test sets. However, their added value requires validation through larger prospective studies.</p>","PeriodicalId":50928,"journal":{"name":"Academic Radiology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.acra.2025.02.042","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
This article reviews the state-of-the-art applications of quantitative magnetic resonance imaging (qMRI) in predicting and evaluating response to transarterial chemoembolization (TACE) in patients with hepatocellular carcinoma (HCC). HCC is a highly heterogeneous tumor, and its response to TACE varies significantly among patients. Early identification of treatment response is critical for optimizing management. Promising results have been reported using various qMRI methods, including hepatocyte-specific contrast-enhanced MRI, diffusion imaging, perfusion imaging, magnetic resonance spectroscopy (MRS), blood oxygen level-dependent functional MRI (BOLD-fMRI), magnetic resonance elastography (MRE), and artificial intelligence (AI). The coefficient of variation in the hepatobiliary phase of hepatocyte-specific contrast-enhanced MRI, which quantifies signal heterogeneity, may predict TACE outcomes. Among diffusion imaging methods, diffusion kurtosis imaging has outperformed intravoxel incoherent motion and diffusion-weighted imaging (DWI), while perfusion imaging has shown a lower area under the curve (AUC) compared to diffusion imaging. Combining MRS with DWI has achieved an AUC of 1.000 for early assessment of TACE response. However, BOLD-fMRI and MRE remain underexplored and lack established models with key quantitative parameters. AI models incorporating radiomics or deep learning with clinical factors have shown promising AUC values ranging from 0.690 to 1.000 in test sets. However, their added value requires validation through larger prospective studies.
期刊介绍:
Academic Radiology publishes original reports of clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, image-guided interventions and related techniques. It also includes brief technical reports describing original observations, techniques, and instrumental developments; state-of-the-art reports on clinical issues, new technology and other topics of current medical importance; meta-analyses; scientific studies and opinions on radiologic education; and letters to the Editor.