Transcultural Adaptation, Validation, Psychometric Analysis, and Interpretation of the 22-Item Thai Senior Technology Acceptance Model for Mobile Health Apps: Cross-Sectional Study.
{"title":"Transcultural Adaptation, Validation, Psychometric Analysis, and Interpretation of the 22-Item Thai Senior Technology Acceptance Model for Mobile Health Apps: Cross-Sectional Study.","authors":"Nida Buawangpong, Penprapa Siviroj, Kanokporn Pinyopornpanish, Wachiranun Sirikul","doi":"10.2196/60156","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The rapid advancement of technology has made mobile health (mHealth) a promising tool to mitigate health problems, particularly among older adults. Despite the numerous benefits of mHealth, assessing individual acceptance is required to address the specific needs of older people and promote their intention to use mHealth.</p><p><strong>Objective: </strong>This study aims to adapt and validate the senior technology acceptance model (STAM) questionnaire for assessing mHealth acceptance in the Thai context.</p><p><strong>Methods: </strong>In this cross-sectional study, we adapted the original, 38-item, English version of the STAM using a 10-point Likert scale for mHealth acceptability among the Thai population. We translated the mHealth STAM into Thai using forward and backward translation. A total of 15 older adults and experts completed the pilot questionnaire and were interviewed to assess its validity. The pilot items of the Thai mHealth STAM were then reworded and revised for better comprehension and cross-cultural compatibility. The construct validity of the Thai mHealth STAM was evaluated by a multidimensional approach, including exploratory and confirmatory factor analysis and nonparametric item response theory analysis. Discriminative indices consisting of sensitivity, specificity, and area under the receiver operating characteristic (AUROC) were used to determine appropriate banding and discriminant validity for the intention to use mHealth. Internal consistency was assessed using Cronbach α and McDonald ω coefficients.</p><p><strong>Results: </strong>Out of the 1100 participants with a mean age of 62.3 (SD 8.8) years, 360 (32.7%) were adults aged 45-59 years, and 740 (67.3%) were older adults aged 60 years and older. Of the 40-item pilot questionnaire, exploratory factor analysis identified 22 items with factor loadings >0.4 across 7 principal components, explaining 91.45% of the variance. Confirmatory factor analysis confirmed that 9-dimensional sets of 22 items had satisfactory fit indices (comparative fit index=0.976, Tucker-Lewis index=0.968, root mean square error of approximation=0.043, standardized root mean squared residual=0.044, and R<sup>2</sup> for each item>0.30). The score banding D (low≤151, moderate 152-180, and high≥181) was preferred as the optimal 22-item Thai mHealth STAM cutoff score based on the highest sensitivity of 89% (95% CI 86.1%-91.5%) and AUROC of 72.4% (95% CI 70%-74.8%) for predicting the intention to use mHealth. The final Thai mHealth STAM, consisting of 22 items, exhibited remarkable internal consistency, as evidenced by a Cronbach α of 0.88 (95% CI 0.87-0.89) and a McDonald ω of 0.85 (95% CI 0.83-0.87). For all 22 items, the corrected item-total correlations ranged between 0.26 and 0.71.</p><p><strong>Conclusions: </strong>The 22-item Thai mHealth STAM demonstrated satisfactory psychometric properties in both validity and reliability. The questionnaire has the potential to serve as a practical questionnaire in assessing the acceptance and intention to use mHealth among pre-older and older adults.</p>","PeriodicalId":36245,"journal":{"name":"JMIR Aging","volume":"8 ","pages":"e60156"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/60156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The rapid advancement of technology has made mobile health (mHealth) a promising tool to mitigate health problems, particularly among older adults. Despite the numerous benefits of mHealth, assessing individual acceptance is required to address the specific needs of older people and promote their intention to use mHealth.
Objective: This study aims to adapt and validate the senior technology acceptance model (STAM) questionnaire for assessing mHealth acceptance in the Thai context.
Methods: In this cross-sectional study, we adapted the original, 38-item, English version of the STAM using a 10-point Likert scale for mHealth acceptability among the Thai population. We translated the mHealth STAM into Thai using forward and backward translation. A total of 15 older adults and experts completed the pilot questionnaire and were interviewed to assess its validity. The pilot items of the Thai mHealth STAM were then reworded and revised for better comprehension and cross-cultural compatibility. The construct validity of the Thai mHealth STAM was evaluated by a multidimensional approach, including exploratory and confirmatory factor analysis and nonparametric item response theory analysis. Discriminative indices consisting of sensitivity, specificity, and area under the receiver operating characteristic (AUROC) were used to determine appropriate banding and discriminant validity for the intention to use mHealth. Internal consistency was assessed using Cronbach α and McDonald ω coefficients.
Results: Out of the 1100 participants with a mean age of 62.3 (SD 8.8) years, 360 (32.7%) were adults aged 45-59 years, and 740 (67.3%) were older adults aged 60 years and older. Of the 40-item pilot questionnaire, exploratory factor analysis identified 22 items with factor loadings >0.4 across 7 principal components, explaining 91.45% of the variance. Confirmatory factor analysis confirmed that 9-dimensional sets of 22 items had satisfactory fit indices (comparative fit index=0.976, Tucker-Lewis index=0.968, root mean square error of approximation=0.043, standardized root mean squared residual=0.044, and R2 for each item>0.30). The score banding D (low≤151, moderate 152-180, and high≥181) was preferred as the optimal 22-item Thai mHealth STAM cutoff score based on the highest sensitivity of 89% (95% CI 86.1%-91.5%) and AUROC of 72.4% (95% CI 70%-74.8%) for predicting the intention to use mHealth. The final Thai mHealth STAM, consisting of 22 items, exhibited remarkable internal consistency, as evidenced by a Cronbach α of 0.88 (95% CI 0.87-0.89) and a McDonald ω of 0.85 (95% CI 0.83-0.87). For all 22 items, the corrected item-total correlations ranged between 0.26 and 0.71.
Conclusions: The 22-item Thai mHealth STAM demonstrated satisfactory psychometric properties in both validity and reliability. The questionnaire has the potential to serve as a practical questionnaire in assessing the acceptance and intention to use mHealth among pre-older and older adults.