Advancements in cache management: a review of machine learning innovations for enhanced performance and security.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Artificial Intelligence Pub Date : 2025-02-25 eCollection Date: 2025-01-01 DOI:10.3389/frai.2025.1441250
Keshav Krishna
{"title":"Advancements in cache management: a review of machine learning innovations for enhanced performance and security.","authors":"Keshav Krishna","doi":"10.3389/frai.2025.1441250","DOIUrl":null,"url":null,"abstract":"<p><p>Machine learning techniques have emerged as a promising tool for efficient cache management, helping optimize cache performance and fortify against security threats. The range of machine learning is vast, from reinforcement learning-based cache replacement policies to Long Short-Term Memory (LSTM) models predicting content characteristics for caching decisions. Diverse techniques such as imitation learning, reinforcement learning, and neural networks are extensively useful in cache-based attack detection, dynamic cache management, and content caching in edge networks. The versatility of machine learning techniques enables them to tackle various cache management challenges, from adapting to workload characteristics to improving cache hit rates in content delivery networks. A comprehensive review of various machine learning approaches for cache management is presented, which helps the community learn how machine learning is used to solve practical challenges in cache management. It includes reinforcement learning, deep learning, and imitation learning-driven cache replacement in hardware caches. Information on content caching strategies and dynamic cache management using various machine learning techniques in cloud and edge computing environments is also presented. Machine learning-driven methods to mitigate security threats in cache management have also been discussed.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"8 ","pages":"1441250"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893820/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2025.1441250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning techniques have emerged as a promising tool for efficient cache management, helping optimize cache performance and fortify against security threats. The range of machine learning is vast, from reinforcement learning-based cache replacement policies to Long Short-Term Memory (LSTM) models predicting content characteristics for caching decisions. Diverse techniques such as imitation learning, reinforcement learning, and neural networks are extensively useful in cache-based attack detection, dynamic cache management, and content caching in edge networks. The versatility of machine learning techniques enables them to tackle various cache management challenges, from adapting to workload characteristics to improving cache hit rates in content delivery networks. A comprehensive review of various machine learning approaches for cache management is presented, which helps the community learn how machine learning is used to solve practical challenges in cache management. It includes reinforcement learning, deep learning, and imitation learning-driven cache replacement in hardware caches. Information on content caching strategies and dynamic cache management using various machine learning techniques in cloud and edge computing environments is also presented. Machine learning-driven methods to mitigate security threats in cache management have also been discussed.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信