Estimation and Hypothesis Testing of Strain-Specific Vaccine Efficacy With Missing Strain Types With Application to a COVID-19 Vaccine Trial.

IF 1.8 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Fei Heng, Yanqing Sun, Li Li, Peter B Gilbert
{"title":"Estimation and Hypothesis Testing of Strain-Specific Vaccine Efficacy With Missing Strain Types With Application to a COVID-19 Vaccine Trial.","authors":"Fei Heng, Yanqing Sun, Li Li, Peter B Gilbert","doi":"10.1002/sim.10345","DOIUrl":null,"url":null,"abstract":"<p><p>Based on data from a randomized, controlled vaccine efficacy trial, this article develops statistical methods for assessing vaccine efficacy (VE) to prevent COVID-19 infections by a discrete set of genetic strains of SARS-CoV-2. Strain-specific VE adjusting for possibly time-varying covariates is estimated using augmented inverse probability weighting to address missing viral genotypes under a competing risks model that allows separate baseline hazards for different risk groups. Hypothesis tests are developed to assess whether the vaccine provides at least a specified level of VE against some viral genotypes and whether VE varies across genotypes. Asymptotic properties providing analytic inferences are derived and finite-sample properties of the estimators and hypothesis tests are studied through simulations. This research is motivated by the fact that previous analyses of COVID-19 vaccine efficacy did not account for missing genotypes, which can cause severe bias and efficiency loss. The theoretical properties and simulations demonstrate superior performance of the new methods. Application to the Moderna COVE trial identifies several SARS-CoV-2 genotype features with differential vaccine efficacy across genotypes, including lineage (Reference, Epsilon, Gamma, Zeta), indicators of residue match vs. mismatch to the vaccine-strain residue at Spike amino acid positions (identifying signatures of differential VE), and a weighted Hamming distance to the vaccine strain. The results show VE decreases against genotypes more distant from the vaccine strain, highlighting the need to update COVID-19 vaccine strains.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":"44 6","pages":"e10345"},"PeriodicalIF":1.8000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11906172/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.10345","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Based on data from a randomized, controlled vaccine efficacy trial, this article develops statistical methods for assessing vaccine efficacy (VE) to prevent COVID-19 infections by a discrete set of genetic strains of SARS-CoV-2. Strain-specific VE adjusting for possibly time-varying covariates is estimated using augmented inverse probability weighting to address missing viral genotypes under a competing risks model that allows separate baseline hazards for different risk groups. Hypothesis tests are developed to assess whether the vaccine provides at least a specified level of VE against some viral genotypes and whether VE varies across genotypes. Asymptotic properties providing analytic inferences are derived and finite-sample properties of the estimators and hypothesis tests are studied through simulations. This research is motivated by the fact that previous analyses of COVID-19 vaccine efficacy did not account for missing genotypes, which can cause severe bias and efficiency loss. The theoretical properties and simulations demonstrate superior performance of the new methods. Application to the Moderna COVE trial identifies several SARS-CoV-2 genotype features with differential vaccine efficacy across genotypes, including lineage (Reference, Epsilon, Gamma, Zeta), indicators of residue match vs. mismatch to the vaccine-strain residue at Spike amino acid positions (identifying signatures of differential VE), and a weighted Hamming distance to the vaccine strain. The results show VE decreases against genotypes more distant from the vaccine strain, highlighting the need to update COVID-19 vaccine strains.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistics in Medicine
Statistics in Medicine 医学-公共卫生、环境卫生与职业卫生
CiteScore
3.40
自引率
10.00%
发文量
334
审稿时长
2-4 weeks
期刊介绍: The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信