{"title":"A direct learning approach for detection of hotspots in microwave hyperthermia treatments.","authors":"Hulusi Onal, Enes Girgin, Semih Doğu, Tuba Yilmaz, Mehmet Nuri Akinci","doi":"10.1007/s11517-025-03343-9","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a computational study for detecting whether the temperature values of the breast tissues are exceeding a threshold using deep learning (DL) during microwave hyperthermia (MH) treatments. The proposed model has a deep convolutional encoder-decoder architecture, which gets differential scattered field data as input and gives an image showing the cells exceeding the threshold. The data are generated by an in-house data generator, which mimics temperature distribution in the MH problem. The model is also tested with real temperature distribution obtained from electromagnetic-thermal simulations performed in commercial software. The results show that the model reaches an average accuracy score of 0.959 and 0.939 under 40 dB and 30 dB signal-to-noise ratio (SNR), respectively. The results are also compared with the Born iterative method (BIM), which is combined with some different conventional regularization methods. The results show that the proposed DL model outperforms the conventional methods and reveals the strong regularization capabilities of the data-driven methods for temperature monitoring applications.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03343-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a computational study for detecting whether the temperature values of the breast tissues are exceeding a threshold using deep learning (DL) during microwave hyperthermia (MH) treatments. The proposed model has a deep convolutional encoder-decoder architecture, which gets differential scattered field data as input and gives an image showing the cells exceeding the threshold. The data are generated by an in-house data generator, which mimics temperature distribution in the MH problem. The model is also tested with real temperature distribution obtained from electromagnetic-thermal simulations performed in commercial software. The results show that the model reaches an average accuracy score of 0.959 and 0.939 under 40 dB and 30 dB signal-to-noise ratio (SNR), respectively. The results are also compared with the Born iterative method (BIM), which is combined with some different conventional regularization methods. The results show that the proposed DL model outperforms the conventional methods and reveals the strong regularization capabilities of the data-driven methods for temperature monitoring applications.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).