Erwin Jose Lopez Pulgarin, Dave Hopper, Jon Montgomerie, James Kell, Joaquin Carrasco, Guido Herrmann, Alexander Lanzon, Barry Lennox
{"title":"From traditional robotic deployments towards assisted robotic deployments in nuclear decommissioning.","authors":"Erwin Jose Lopez Pulgarin, Dave Hopper, Jon Montgomerie, James Kell, Joaquin Carrasco, Guido Herrmann, Alexander Lanzon, Barry Lennox","doi":"10.3389/frobt.2025.1432845","DOIUrl":null,"url":null,"abstract":"<p><p>The history around teleoperation and deployment of robotic systems in constrained and dangerous environments such as nuclear is a long and successful one. From the 1940s, robotic manipulators have been used to manipulate dangerous substances and enable work in environments either too dangerous or impossible to be operated by human operators. Through the decades, technical and scientific advances have improved the capabilities of these devices, whilst allowing for more tasks to be performed. In the case of nuclear decommissioning, using such devices for remote inspection and remote handling has become the only solution to work and survey some areas. Such applications deal with challenging environments due to space constrains, lack of up-to-date structural knowledge of the environment and poor visibility, requiring much training and planning to succeed. There is a growing need to speed these deployment processes and to increase the number of decommissioning activities whilst maintaining high levels of safety and performance. Considering the large number of research and innovation being done around improving robotic capabilities, numerous potential benefits could be made by translating them to the nuclear decommissioning use cases. We believe such innovations, in particular improved feedback mechanisms from the environment during training and deployments (i.e., Haptic Digital Twins) and higher modes of assisted or supervised control (i.e., Semi-autonomous operation) can play a large role. We list some of the best practices currently being followed in the industry around teleoperation and robotic deployments and the potential benefits of implementing the aforementioned innovations.</p>","PeriodicalId":47597,"journal":{"name":"Frontiers in Robotics and AI","volume":"12 ","pages":"1432845"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893983/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2025.1432845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The history around teleoperation and deployment of robotic systems in constrained and dangerous environments such as nuclear is a long and successful one. From the 1940s, robotic manipulators have been used to manipulate dangerous substances and enable work in environments either too dangerous or impossible to be operated by human operators. Through the decades, technical and scientific advances have improved the capabilities of these devices, whilst allowing for more tasks to be performed. In the case of nuclear decommissioning, using such devices for remote inspection and remote handling has become the only solution to work and survey some areas. Such applications deal with challenging environments due to space constrains, lack of up-to-date structural knowledge of the environment and poor visibility, requiring much training and planning to succeed. There is a growing need to speed these deployment processes and to increase the number of decommissioning activities whilst maintaining high levels of safety and performance. Considering the large number of research and innovation being done around improving robotic capabilities, numerous potential benefits could be made by translating them to the nuclear decommissioning use cases. We believe such innovations, in particular improved feedback mechanisms from the environment during training and deployments (i.e., Haptic Digital Twins) and higher modes of assisted or supervised control (i.e., Semi-autonomous operation) can play a large role. We list some of the best practices currently being followed in the industry around teleoperation and robotic deployments and the potential benefits of implementing the aforementioned innovations.
期刊介绍:
Frontiers in Robotics and AI publishes rigorously peer-reviewed research covering all theory and applications of robotics, technology, and artificial intelligence, from biomedical to space robotics.